Physical Research Laboratory, Ahmedabad

Mathematical and Numerical Methods

Test-II, 2012

Time: 90 Minutes
Total Marks: 50

Instructions: (1) All questions are compulsory.
(2) The bold letters represent vectors.
(3) The symbols have usual meanings.
(4) The numbers to the right indicate marks.
(5) The use of un-programmable calculator is permitted.
(6) Support your answers with diagrams, if applicable, along with the detailed steps.
Q. 1 (a) Five forces $\mathbf{F}_{1}, \mathbf{F}_{2}, \mathbf{F}_{3}, \mathbf{F}_{4}$ and \mathbf{F}_{5} with magnitudes equal to the distances between a vertex O and other vertices of a regular hexagon OABCDE as shown in Figure 1 are pulling the vertex O . Find out and show in the figure, a force \mathbf{F} acting on the point O in such a way that the regular hexagon is not distorted.

Figure 1
(b) Calculate the circulation of $\mathbf{A}=\rho \cos \phi \mathbf{a}_{\boldsymbol{\rho}}+\mathrm{z} \sin \phi \mathbf{a}_{\mathbf{z}}$ around the edge L of the wedge defined by $0 \leq \rho \leq 2,0 \leq \phi \leq 60^{\circ}, z=0$ as shown in Figure 2.

Figure 2
Q. 2 (a) Draw the vector fields whose (1) divergence is positive, (2) zero and (3) negative in a plane.
(b) Evaluate the divergence of a field $\mathbf{P}=\mathrm{x}^{2} \mathrm{y} \mathrm{Z} \mathbf{a}_{\mathbf{x}}+\mathrm{x} \mathrm{Z} \mathbf{a}_{\mathrm{z}}$ at a point which is given in the cylindrical system as $(1,1,1)$.
Q. 3 Solve the following equation in series, starting with an assumption that the first term of the series is a constant term.

$$
\frac{d^{2} y}{d x^{2}}-y=0
$$

Q. 4 Find the general solution, singular solution, Tac locus and Node locus of the following equation.

$$
\left(\frac{d y}{d x}\right)^{2}(2-3 y)^{2}=4(1-y)
$$

Q. 5 Solve the following equation

$$
\begin{equation*}
\sqrt{\frac{\partial z}{\partial x}}+\sqrt{\frac{\partial z}{\partial y}}=1 \tag{5}
\end{equation*}
$$

