Problem-1
Assignment - 8
\# , solve the system of egos. by matrix method

$$
\begin{gather*}
2 x-2 y+z=1 \\
x+2 y+2 z=2 \tag{2}\\
2 x+y-2 z=7 \tag{3}
\end{gather*}
$$

801^{n}
These egns can be written as

$$
\begin{aligned}
& \quad\left[\begin{array}{ccc}
2 & -2 & 1 \\
1 & 2 & 2 \\
2 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
7
\end{array}\right] \\
& A X=B \quad A=\left[\begin{array}{ccc}
2 & -2 \\
1 & 1 & 2 \\
2 & 1 & -2
\end{array}\right], B=\left[\begin{array}{l}
1 \\
2 \\
7
\end{array}\right] \\
& |A|=\left[\begin{array}{ccc}
2 & -2 & 1 \\
1 & 2 & 2 \\
2 & 1 & -2
\end{array}\right] \\
& = \\
& =
\end{aligned}
$$

Cofactors of first row are

$$
-6,6,-3
$$

Cofactors of Alecend row are

$$
-3,-6,-6
$$

Cofactors of Third row are

$$
\begin{aligned}
\therefore \operatorname{adj} A & =\left[\begin{array}{ccc}
-6 & -3,6 \\
-3 & -6 & -3 \\
-6 & -3 & 6
\end{array}\right] \prime=\left[\begin{array}{ccc}
-6 & -3 & -6 \\
6 & -6 & -3 \\
-3 & -6 & 6
\end{array}\right] \\
\therefore A^{-1} & =\frac{1}{|A|} \operatorname{adj} A
\end{aligned} \begin{aligned}
& \therefore \frac{-1}{27}\left[\begin{array}{ccc}
-6 & -3 & -6 \\
6 & -6 & -3 \\
-3 & -6 & 6
\end{array}\right]=\frac{1}{9}\left[\begin{array}{ccc}
+2 & 1 & 2 \\
-2 & 2 & 1 \\
1 & 2 & -2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] }=\frac{1}{9}\left[\begin{array}{ccc}
2 & 1 & 2 \\
-2 & 2 & 1 \\
1 & 2 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
7
\end{array}\right] \\
&=\frac{1}{9}\left[\begin{array}{c}
18 \\
9 \\
-9
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] }=\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right] \\
& \therefore x=2, y=1, z=-1
\end{aligned}
$$

Group-4 Assignment -8
Q.2. Solve the following system of eq's by matrix method.

$$
x+2 y+z=4, \quad 2 x+y=3, \quad x+z=2
$$

solution:- The throe $\operatorname{ef}^{\hat{p}}$ are

$$
\begin{aligned}
x+2 y+z & =4 \\
2 x+y & =3 \\
x+z & =2
\end{aligned}
$$

In matrix form these eq's can be written as

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
4 \\
3 \\
2
\end{array}\right]
$$

Assume that; $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 1\end{array}\right], \quad X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], \quad B=\left[\begin{array}{l}y \\ 3 \\ 2\end{array}\right]$

$$
\begin{aligned}
\operatorname{sot} A=\left|\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right| & =1(1-0)-2(2-0)+1(0-1) \\
& =1-4-1=-4 \neq 0
\end{aligned}
$$

As $|A| \neq 0$ \& $B \neq 0$ so A^{-1} exists
$\therefore A x=B$

$$
\begin{align*}
& \therefore A x=B \tag{i}\\
& \Rightarrow x=A^{-1} B=\frac{(\operatorname{adj} A) B}{|A|}
\end{align*}
$$

Co-factars of matrix A are

$$
\begin{aligned}
& A_{11}=(-1)^{2}(1-0)=1 \\
& A_{12}=(-1)^{3}(2-0)=-2 \\
& A_{13}=(-1)^{4}(0-1)=-1 \\
& A_{21}=(-1)^{3}(2-0)=-2 \\
& A_{22}=(-1)^{4}(1-1)=0 \\
& A_{23}=(-1)^{5}(0-2)=2 \\
& A_{31}=(-1)^{4}(0-1)=-1 \\
& A_{32}=(-1)^{5}(0-2)=2 \\
& A_{33}=(-1)^{6}(1-4)=-3
\end{aligned}
$$

So the cofactors matrix of A is $\left[\begin{array}{ccc}1 & -2 & -1 \\ -2 & 0 & 2 \\ -1 & 2 & -3\end{array}\right]$
Transpose of the co-factor matrix of $A=\left[\begin{array}{ccc}1 & -2 & -1 \\ -2 & 0 & 2 \\ -1 & 2 & -3\end{array}\right]=\operatorname{adj} A$
\therefore Now adj. B

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
1 & -2 & -1 \\
-2 & 0 & 2 \\
-1 & 2 & -3
\end{array}\right]\left[\begin{array}{l}
4 \\
3 \\
2
\end{array}\right] \\
& =\left[\begin{array}{c}
4+6-2 \\
-8+0+4 \\
-4+6-6
\end{array}\right]=\left[\begin{array}{c}
-4 \\
-4 \\
-4
\end{array}\right]
\end{aligned}
$$

rester so eq (1) gives;

$$
\begin{aligned}
& x=\frac{(\operatorname{adj} A) B}{|A|}=\frac{1}{-4}\left[\begin{array}{c}
3-4 \\
-4 \\
-4
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \Rightarrow {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] } \\
& \text { So } x=1
\end{aligned}
$$

Lalit kumar shukla.
Assignment \#8 \& Raul yoda Or
"Ques Solve the system of equations by matrix method.

$$
\begin{aligned}
& x+y+z=6 \\
& x+2 y+3 z=14 \\
& x+4 y+9 z=36
\end{aligned}
$$

Sal using Craws elimination method.

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
6 \\
14 \\
36
\end{array}\right]
$$

Subtracting $\& 3^{\text {rd d }}$ row, using row st.

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 3 & 8
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left(\begin{array}{c}
6 \\
8 \\
30
\end{array}\right)
$$

multiply \&ow 2 nd with 3 \& subtract $3^{\text {rd }}$. how from $2 n d$ rani . we get,

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 3 & 6 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left(\begin{array}{c}
6 \\
27 \\
6
\end{array}\right)} \\
x+y+z=6 \\
3 y+6 z=24 \\
2 z=6
\end{gathered}
$$

Back Substitution

$$
z=3
$$

$$
\begin{gathered}
y+2 z=8 \\
y=8-6=2 \\
x+y+z=6 \\
x=6-5=1 \\
x=1, y=2, z=3
\end{gathered}
$$

भौतिक अनुसंधान प्रयोगशाला, अहमदाबाद
Physical Research Laboratory, Ahmedabad
Solve the eqin? by matrix method i \rightarrow

$$
x+y+z=3 ; \quad x+2 y+3 z=4 ; \quad x+4 y+9 z=6
$$

We can write,

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
3 \\
4 \\
6
\end{array}\right)
$$

$$
\text { or, } \quad A X=\left(\begin{array}{l}
3 \\
4 \\
6
\end{array}\right)
$$

where $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right)$ and $X=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$

Now,

$$
\begin{aligned}
|A|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9
\end{array}\right|= & 1(18-12)+1(3-9) \\
& +1(4-2) \\
= & 6-6+2=2
\end{aligned}
$$

Co-factor of $a_{11}=(-1)^{1+1}\left|\begin{array}{ll}2 & 3 \\ 4 & 9\end{array}\right|=6$

$$
\begin{aligned}
& a_{12}=(-1)^{1+2}\left|\begin{array}{ll}
1 & 3 \\
1 & 9
\end{array}\right|=-6, a_{13}=(-1)^{1+3}\left|\begin{array}{ll}
1 & 2 \\
1 & 4
\end{array}\right|=2 \\
& a_{21}=(-1)^{2+1}\left|\begin{array}{cc}
1 & 1 \\
4 & 9
\end{array}\right|=-5, a_{22}=(-1)^{2+2}\left|\begin{array}{ll}
1 & 1 \\
1 & 9
\end{array}\right|=8 \\
& a_{23}=(-1)^{2+3}\left|\begin{array}{cc}
1 & 1 \\
1 & 4
\end{array}\right|=-3 ; \quad a_{31}=(-1)^{3+1}\left|\begin{array}{l}
1 \\
2
\end{array}\right|=1
\end{aligned}
$$

$$
\begin{aligned}
& a_{32}=(-1)^{3+2}\left|\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right|=-2, a_{33}=(-1)^{3+3}\left|\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right| \\
&=1
\end{aligned}
$$

Gorfactor matrix of

$$
B A=\left(\begin{array}{ccc}
6 & -6 & 2 \\
-5 & 8 & -3 \\
1 & -2 & 1
\end{array}\right)
$$

So, the inverse of A is

$$
A^{-1}=\frac{1}{|A|} B^{\top}=\frac{1}{2}\left(\begin{array}{ccc}
6 & -5 & 1 \\
-6 & 8 & -2 \\
2 & -3 & 1
\end{array}\right)
$$

So,

$$
\begin{aligned}
x & =A^{-1}\left(\begin{array}{l}
3 \\
4 \\
6
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ccc}
6 & -5 & 1 \\
-6 & 8 & -2 \\
2 & -3 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
4 \\
6
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{l}
4 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

So, the sol ${ }^{n}$ of the eq u".

$$
x=2, y=1, \text { and } z=0
$$

Assignment-8

GROUP-10(George \& Ritwik)

Question 5:

Solve the following system of equations by matrix method:

$$
\begin{gathered}
2 x_{1}-x_{2}+x_{3}=4 \\
x_{1}+x_{2}+x_{3}=1 \\
x_{1}-3 x_{2}-2 x_{3}=2
\end{gathered}
$$

Answer:

The coefficient matrix would be

$$
A=\left[\begin{array}{ccc}
2 & -1 & 1 \\
1 & 1 & 1 \\
1 & -3 & -2
\end{array}\right]
$$

And let's assume that

$$
B=\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right]
$$

Therefore the set of equations can be nicely put in the following form

$$
A X=B
$$

Where $X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$

$$
\Rightarrow X=A^{-1} B
$$

So the whole idea is to fine the inverse of the matrix A and then we are done.

$$
\begin{aligned}
\operatorname{Adj} A=\left[\begin{array}{ccc}
1 & 3 & -4 \\
-5 & -5 & 5 \\
-2 & -1 & 3
\end{array}\right]^{T} & =\left[\begin{array}{ccc}
1 & -5 & -2 \\
3 & -5 & -1 \\
-4 & 5 & 3
\end{array}\right] \\
\operatorname{Det} A=|A| & =-5
\end{aligned}
$$

The inverse matrix would be

$$
A^{-1}=\frac{\operatorname{Adj} A}{|A|}=-\frac{1}{5}\left[\begin{array}{ccc}
1 & -5 & -2 \\
3 & -5 & -1 \\
-4 & 5 & 3
\end{array}\right]
$$

$$
\begin{gathered}
X=A^{-1} B=-\frac{1}{5}\left[\begin{array}{ccc}
1 & -5 & -2 \\
3 & -5 & -1 \\
-4 & 5 & 3
\end{array}\right]\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right] \\
\Rightarrow X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
\end{gathered}
$$

By comparing two sides we can always get the solution

$$
\begin{gathered}
x_{1}=1 \\
x_{2}=-1 \\
x_{3}=1
\end{gathered}
$$

$$
\frac{\text { ASSIGNMENT }-08}{G-07}
$$

Prob-0, We have to determine rank of given 4×4 matrix
Given matrix is

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 2 \\
2 & 3 & 5 & 1 \\
1 & 3 & 4 & 5 \\
0 & -2 & 1 & 0
\end{array}\right]
$$

Applying Row trans formation
We can reduce the matrix to Echelon form In Echelon form this matrix is

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -6 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

clearly this matrix is of rank 3 i.e., it's three rows are linearly independent

Group - 11
(1) भौतिक अनुसंधान प्रयोगशाला, अहमदाबाद

Physical Research Laboratory, Ahmedabad
(7) Find inverse of matrix $\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right]$ by Gouss-Jordan
method

Definition:- Let ' A be en invertible $n \times n$ matrix. suppose that a sequence of elementary row operations reduces ' A ' to Identity matrix. Then the sane sequence of elementary row operations when applied to identity matrix yields A^{-1}.

$$
\text { Given }\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& (5) \Rightarrow\left[\begin{array}{llllll}
1 & 0 & 1 & 2 & -1 & 0 \\
0 & 1 & 0 & -\frac{5}{4} & \frac{3}{4} & \frac{1}{4} \\
0 & 0 & 1 & \frac{1}{4} & \frac{1}{4} & -\frac{1}{4}
\end{array}\right] \\
& R_{1} \rightarrow \frac{R_{1}-R_{3}}{} \\
& (8) \Rightarrow\left[\begin{array}{ccccc}
1 & 0 & 0 & 7 / 4 & -5 / 41 / 4 \\
0 & 1 & 0 & -5 / 4 & 3 / 4 / 4 \\
0 & 0 & 1 & 1 / 4 & 1 / 4 \\
-1 / 4
\end{array}\right]
\end{aligned}
$$

By detrition of gouss-Jordan

$$
R_{3} \rightarrow R_{3} /-4
$$ method the inverse of given matrix is

(4)

$$
\left[\begin{array}{cccccc}
1 & 0 & 1 & 2 & -1 & 0 \\
0 & 1 & 1 & -1 & 1 & 0 \\
0 & 0 & 1 & 1 / 4 & 1 / 4 & -1 / 4
\end{array}\right]
$$

$$
R_{2} \rightarrow R_{2}-R_{3}
$$

Assigrmment - 8
Gr-1
Newtor Nath a Vikas Chand
(8) Use hauss-Jordon reduction methad to find the inverse of

$$
\left(\begin{array}{ccc}
7 & 6 & 2 \\
-1 & 2 & 4 \\
3 & 6 & 8
\end{array}\right)
$$

$$
\begin{aligned}
& N M / 2=\left(\begin{array}{ccc}
7 & 6 & 2 \\
-1 & 2 & 4 \\
3 & 6 & 8
\end{array}\right)=\left(\begin{array}{cccccc}
7 & 6 & 2 & 1 & 0 & 0 \\
-1 & 2 & 4 & 0 & 1 & 0 \\
3 & 6 & 8 & 0 & 0 & 1
\end{array}\right) \\
&=\left(\begin{array}{cccccc}
1 & 6 / 7 & 2 / 7 & 1 / 7 & 0 & 0 \\
0 & 4 & 20 / 3 & 0 & 1 & 1 / 3 \\
3 & 6 & 8 & 0 & 0 & 1
\end{array}\right) \begin{array}{l}
R_{1} \rightarrow \frac{1}{7} R_{1} \\
R_{2} \rightarrow R_{2}+\frac{1}{3} R_{3} \\
\end{array} \\
&=\left(\begin{array}{cccccc}
1 & 6 / 7 & 2 / 7 & 1 / 7 & 0 & 0 \\
0 & 4 & 20 / 3 & 0 & 1 & 1 / 3 \\
0 & 24 / 7 & 50 / 7 & -3 / 7 & 0 & 1
\end{array}\right) R_{3} \rightarrow R_{3}-3 R_{1} \\
&=\left(\begin{array}{cccccc}
1 & 6 / 7 & 2 / 7 & 1 / 7 & 0 & 0 \\
0 & 4 & 20 / 3 & 0 & 1 & 1 / 3 \\
0 & 1 & 50 / 24 & -3 / 24 & 0 & 7 / 24
\end{array}\right) R_{3} \rightarrow \frac{7}{24} R_{3} \\
&=\left(\begin{array}{cccccc}
1 & 6 / 7 & 2 / 7 & 1 / 7 & 0 & 0 \\
0 & 4 & 20 / 3 & 0 & 1 & 1 / 3 \\
0 & 0 & 5 / 12 & -1 / 8 & -1 / 4 & 5 / 24
\end{array}\right) R_{3} \rightarrow R_{3}-\frac{1}{4} R_{2} \\
&=\left(\begin{array}{cccccc}
1 & 6 / 7 & 2 / 7 & 1 / 7 & 0 & 0 \\
0 & 1 & 5 / 3 & 0 & 1 / 4 & 1 / 12 \\
0 & 0 & 1 & -3 / 10 & -3 / 5 & 1 / 2
\end{array}\right) R_{2} \rightarrow \frac{1}{4} R_{2} \\
& R_{3} \rightarrow \frac{12}{5} R_{3}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{cccccc}
1 & 6 / 7 & 2 / 7 & 1 / 7 & 0 & 0 \\
0 & 1 & 0 & 1 / 2 & 5 / 4 & -3 / 4 \\
0 & 0 & 1 & -3 / 10 & -3 / 5 & 1 / 2
\end{array}\right) R_{2} \rightarrow R_{2}-5 / 3 R_{3} \\
& =\left(\begin{array}{cccccc}
1 & 6 / 7 & 0 & 8 / 35 & 6 / 35 & -1 / 7 \\
0 & 1 & 0 & 1 / 2 & 5 / 4 & -3 / 4 \\
0 & 0 & 1 & -3 / 10 & -3 / 5 & 1 / 2
\end{array}\right) R_{1} \rightarrow R_{1}-\frac{2}{7} R_{3} \\
& =\left(\begin{array}{cccccc}
1 & 0 & 0 & -1 / 5 & -9 / 10 & 1 / 2 \\
0 & 1 & 0 & 1 / 2 & 5 / 4 & -3 / 4 \\
0 & 0 & 1 & -3 / 10 & -3 / 5 & 1 / 2
\end{array}\right) R_{1} \rightarrow R_{1}-\frac{6}{7} R_{2} . \\
& \therefore \text { Th reqd. } A^{-1} \text { is }\left(\begin{array}{ccc}
-1 / 5 & -9 / 10 & 1 / 2 \\
1 / 2 & 5 / 4 & -3 / 4 \\
-3 / 10 & -3 / 5 & 1 / 2
\end{array}\right) \text {, }
\end{aligned}
$$

Assignment 8

Group 5: Apurv \& Sanjay

Question

9. If $A=\left[\begin{array}{ccc}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, find A^{-1}. Also find two non-singular matrices P and Q such that $\mathrm{PAQ}=\mathbb{I}$, where \mathbb{I} is the unit matrix and verify that $\mathrm{A}^{-1}=\mathrm{QP}$.

Solution

The combined matrix [A I] is given by

$$
\left[\begin{array}{llllll}
3 & -3 & 4 & 1 & 0 & 0 \\
2 & -3 & 4 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

By further row operations,
$\sim R_{1} \mapsto R_{1}-R_{2}\left[\begin{array}{cccccc}1 & 0 & 0 & 1 & -1 & 0 \\ 2 & -3 & 4 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1\end{array}\right] \sim R_{2} \mapsto 2 R_{2}-R_{1}\left[\begin{array}{cccccc}1 & 0 & 0 & 1 & -1 & 0 \\ 0 & -3 & 4 & -2 & 3 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1\end{array}\right]$
$\sim R_{3} \mapsto R_{2}-3 R_{3}\left[\begin{array}{cccccc}1 & 0 & 0 & 1 & -1 & 0 \\ 0 & -3 & 4 & -2 & 3 & 0 \\ 0 & 0 & 1 & -2 & 3 & -3\end{array}\right] \sim R_{2} \mapsto R_{2}-4 R_{3} ; R_{2} \mapsto \frac{R_{2}}{-3}\left[\begin{array}{cccccc}1 & 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -2 & 3 & -4 \\ 0 & 0 & 1 & -2 & 3 & -3\end{array}\right.$

So finally $\mathrm{A}^{-1}=\left[\begin{array}{ccc}1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3\end{array}\right]$
Now second part of the question is to find Q and P such that $\mathrm{QAP}=\mathbb{I}$. The most straight forward answer is to choose either P or Q to be A^{-1} and to choose the other as II.So one of the choice will be

$$
\begin{equation*}
P=A^{-1} \quad \text { and } \quad Q=\mathbb{I} \tag{0.0.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
P A Q=A^{-1} A \mathbb{I}=\mathbb{I} \times \mathbb{I}=\mathbb{I} \tag{0.0.2}
\end{equation*}
$$

It also satisfies the condition

$$
\begin{equation*}
P Q=A^{-1} \mathbb{I}=A^{-1} \tag{0.0.3}
\end{equation*}
$$

We also note that there are infinitely many choice for P and Q which satisfies the condition in the question.
910. Examine whether the following eq"~s ave e consistent \& sole them, if they are consistent.

$$
\begin{gathered}
x+y+z=6 \\
2 x+y+3 z=13 \\
5 x+2 y+z=12 \\
2 x-3 y-2 z=-10
\end{gathered}
$$

Sol': Writing the above eg's in Angmented Matrix form, we get:

$$
\left|\begin{array}{cccc}
1 & 1 & 1 & 6 \\
2 & 1 & 3 & 13 \\
5 & 2 & 1 & 12 \\
2 & -3 & -2 & -10
\end{array}\right|
$$

Carrying on Row operation, we get:

$$
\begin{aligned}
& \left.R_{2}-2 R_{1} \longrightarrow|\longrightarrow| \begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & -1 & 1 & 1 \\
R_{4}-2 R_{1} & \longrightarrow\left|\begin{array}{cccc}
\\
0 & -3 & -4 & -18 \\
0 & -5 & -4 & -22
\end{array}\right| \\
R_{4}-5 R_{2} & \longrightarrow\left|\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & -1 & 1 & 1 \\
0 & -3 & -4 & -18 \\
0 & 0 & -9 & -27
\end{array}\right| \\
R_{2} \times 3 & \longrightarrow\left|\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & -1 & 1 & 1 \\
0 & -3 & -4 & -18 \\
0 & 0 & -1 & -3
\end{array}\right| \\
1 & 1 & 1 & 6 \\
0 & -3 & 3 & 3 \\
0 & -3 & -4 & -18 \\
0 & 0 & -1 & -3
\end{array} \right\rvert\,
\end{aligned}
$$

$$
\left.\begin{array}{l}
R_{3}-R_{2} \rightarrow\left|\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & -3 & 3 & 3 \\
0 & 0 & -7 & -21 \\
0 & 0 & -1 & -3
\end{array}\right| \\
\frac{1}{7} R_{3}
\end{array}\right]\left|\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & -3 & 3 & 3 \\
0 & 0 & -1 & -3 \\
0 & 0 & -1 & -3
\end{array}\right|, \left.~ \begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & -3 & 3 & 3 \\
0 & 0 & -1 & -3 \\
0 & 0 & 0 & 0
\end{array} \right\rvert\,
$$

\therefore This is a consistent secto^{n}.

$$
\begin{align*}
& \text { Let, }\left|\begin{array}{cccc}
a & 1 & 1 & q \\
0 & -3 & 3 & =- \\
0 & 0 & -1 & \beta \\
0 & 0 & 0
\end{array}\right|\left|\begin{array}{c}
\pi \\
y \\
2
\end{array}\right|=\left|\begin{array}{c}
6 \\
3 \\
-3 \\
0
\end{array}\right| \tag{1}\\
& \therefore \quad m+y+z=6 \\
& -3 y+3 z=3 \\
& -z=-3 \tag{iii}
\end{align*}
$$

Solving the $3 \mathrm{eq}^{n s}$, we get
Putting value of z in $e q^{n}(1) \Rightarrow-3 y+9=3$

$$
\begin{aligned}
\therefore-3 y & =-6 \\
y & =2
\end{aligned}
$$

(i) $B \quad n+2+3=6$

$$
\begin{array}{ll}
\therefore & x=1 \\
\therefore & \left|\begin{array}{l}
x \\
y \\
z
\end{array}\right|=\left|\begin{array}{l}
1 \\
2 \\
3
\end{array}\right|
\end{array}
$$

Show that $\tan ^{-1} z=\frac{i}{2} \log \frac{i+z}{i-z}$

$$
\begin{aligned}
\text { let } \begin{aligned}
& \tan ^{-1} z=x \\
& z=\tan x \\
& \therefore \quad=\frac{e^{i x}-e^{-i x}}{e^{i x}+e^{-i x}} \times \frac{1}{i} \\
& z i=\frac{e^{i x}-e^{-i x}}{e^{i x}+e^{-i x}} \\
& \frac{z}{-i}=\frac{e^{i x}-e^{-i x}}{e^{i x}+e^{-i x}} \\
& \frac{z}{i}=\frac{e^{-i x}-e^{i i x}}{e^{i x}+e^{-i x}} \\
& \frac{i+z}{i-z}=\frac{e^{-i x}+e^{i x}+e^{-i x}-e^{i x}}{e^{-i x}+e^{i x}-e^{-i x}+e^{i x}} \\
& \frac{i+z}{i-z}=\frac{e^{-i x}}{e^{i x}} \\
& \frac{i+z}{i-z}= \\
& e^{-2 i x} \\
& z
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{1}{2(-i)} \log \left(\frac{i+z}{i-2}\right) \\
& \tan ^{-1} z=\frac{i}{2} \log \left(\frac{i+z}{i-2}\right) \\
& x
\end{aligned}
$$

Assignment moi.
Q. 5

Factorize the matrix $A=\left[\begin{array}{ccc}5 & -2 & 1 \\ 7 & 1 & -5 \\ 3 & 7 & 4\end{array}\right]$ into the form
LU, where L is lowestriangnlas and n is upper triangular matrix.
Ans: Carking our How operations to make the matrix in rowechelon form, we gel':

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
5 & -2 & 1 \\
7 & 1 & -5 \\
3 & 7 & 4
\end{array}\right] \\
& R_{2}-R_{3} \rightarrow\left[\begin{array}{ccc}
5 & -2 & 1 \\
4 & -6 & -9 \\
3 & 7 & 4
\end{array}\right] \\
& R_{2}-R_{1} \longrightarrow\left[\begin{array}{ccc}
5 & -2 & 1 \\
-1 & -4 & -10 \\
3 & 7 & 4
\end{array}\right] \\
& R_{3}+3 R_{2} \rightarrow\left[\begin{array}{ccc}
5 & -2 & 1 \\
-1 & -4 & -10 \\
0 & -5 & -26
\end{array}\right] \\
& 5 R_{2}+R_{1}\left.\longrightarrow \begin{array}{ccc}
\frac{1}{5} \\
5 & -2 & -22 \\
0 & -5 & -26
\end{array}\right] \\
& R_{3} \times \frac{22}{5} \longrightarrow \frac{1}{5} \times \frac{5}{22}\left[\begin{array}{ccc}
5 & -2 \\
0 & -22 & -49 \\
0 & 22 & \frac{26 \times 22}{5}
\end{array}\right]
\end{aligned}
$$

$$
R_{3}+R_{2} \rightarrow\left[\begin{array}{ccc}
5 & -2 & 1 \\
0 & -22 & -49 \\
0 & 0 & 32715
\end{array}\right]
$$

To get lis we white the elementary matrices and their inverses for each of the operation above.

$$
\text { Let us have a unit matrix }\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& E_{2}=R_{2}-R_{1} \rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & -1 \\
0 & 0 & 1
\end{array}\right] \quad \therefore \quad E_{2}^{-1} 0\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \\
& \left.E_{3}=R_{3}+3 R_{2} \rightarrow \left\lvert\, \begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & -1 \\
-3 & 3 & -2
\end{array}\right.\right] \therefore E_{0}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & -2 & 1 \\
0 & 3 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& E_{4}=S R_{2}+R_{1} \rightarrow \frac{1}{5}\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 5 & -5 \\
-3 & 3 & -2
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 / 5 & 1 & -1 \\
-3 & 3 & -2
\end{array}\right] \therefore E_{4}^{-1} \therefore\left[\begin{array}{ccc}
1 & 0 & 0 \\
7 / 5 & -2 & 1 \\
3 / 5 & 3 & 1
\end{array}\right]
\end{aligned}
$$

$$
t_{5}=h_{3}\left(\frac{-22}{5}\right) \Rightarrow-\frac{-5}{22}\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 / 5 & 1 & -1 \\
-\frac{66}{5} & \frac{-66}{5} & \frac{-47}{5}
\end{array}\right] \therefore \hat{k}_{5}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
7 / 5 & -2 & 8 / 22 \\
3 / 5 & -3 & 5 / 22
\end{array}\right]
$$

$$
\begin{gathered}
E_{6}=R_{3}+R_{2} \longrightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 / 5 & 1 & -1 \\
-15 & 67 / 5 & -54 / 5
\end{array}\right] \\
E_{6}^{-1}=-\frac{22}{13}\left[\begin{array}{ccc}
13 / 5 & 0 & 0 \\
189 / 25 & -54 / 5 & 1 \\
107 / 25 & 67 / 5 & 1
\end{array}\right]
\end{gathered}
$$

we have,

$$
\begin{aligned}
& n=\left[\begin{array}{ccc}
5 & -2 & 1 \\
0 & -22 & -49 \\
0 & 0 & 327 / 5
\end{array}\right] \\
& L=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} E_{5}^{-1} E_{6}^{-1}: \\
& \therefore L=-\frac{-22}{3}\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right|\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\left|\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & -2 & 1 \\
0 & 3 & 1
\end{array}| | \begin{array}{ccc}
1 & 0 & 0 \\
7 / 5 & -2 & 1 \\
3 / 5 & 3 & 1
\end{array}| | \begin{array}{ccc}
1 & 0 & 0 \\
7 / 5 & -2 & 7 / 22 \\
3 / 5 & -3 & 7 / 22
\end{array}\right]\right|\right. \\
& \left.\left\lvert\, \begin{array}{ccc}
13 / 5 & 0 & 0 \\
159 / 25 & -54 / 5 & 1 \\
107 / 25 & 67 / 5 & 1
\end{array}\right.\right] \\
& =\frac{-22}{13}\left[\begin{array}{ccc}
1315 & 0 & 0 \\
\frac{-27632}{275} & \frac{15002}{55} & \frac{-233}{11} \\
\frac{-16163}{550} & \frac{659}{5} & \frac{-127}{5}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-22 / 5 & 0 & 0 \\
\frac{55264}{325} & \frac{-2308}{5} & \frac{466}{13} \\
n 001 & \cdots & \cdots
\end{array}\right]
\end{aligned}
$$

Factores are :

$$
M=\left[\begin{array}{ccc}
s & -2 & 1 \\
0 & -22 & -49 \\
0 & 0 & 327 / 5
\end{array}\right]
$$

(18) भौतिक अनुसंधान प्रयोगशाला, अहमदाबाद

Physical Research Laboratory, Ahmedabad
11. Solve completely the following syslem. of equationo:

$$
\begin{aligned}
& x+y-2 z+3 w=0 \\
& x-2 y+z-w=0 \\
& 4 x+y-5 z+8 w=0 \\
& 5 x-7 y+2 z-w=0
\end{aligned}
$$

\Rightarrow

$$
\operatorname{Let} A=\left(\begin{array}{cccc}
1 & 1 & -2 & 3 \\
1 & -2 & 1 & -1 \\
4 & 1 & -5 & 8 \\
5 & -7 & 2 & -1
\end{array}\right)
$$

$$
X=\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right) \quad O=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

So, the mabrix equation is:

$$
A X=O
$$

Delerminant of the iq is:

$$
\begin{aligned}
& \text { leminunt of the l9n is: } \\
& \begin{aligned}
\Delta= & 1[-2(5-16)-(-1+56)-1(2-35)]-1[1(5-16)-(-4-40) \\
& -1(8+25)]-2[1(-1+56)+2(-4-40)-1(-28-5)] \\
& -3[1(2-35)+2(8+25)+1(-28-5)]
\end{aligned}
\end{aligned}
$$

$=0$.
Lo, as the deleminar is 0 , NO the equations goven are incorsishent. Ans

