$\begin{bmatrix} \pi \\ 2 \\ 2 \\ z \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 2 & 1 & 2 \\ -2 & 2 & 1 \\ 1 & 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 7 \\ 1 \end{bmatrix}$ $= \frac{1}{9} \begin{bmatrix} 18\\ -9 \end{bmatrix}$ $\begin{bmatrix} \mathfrak{A} \\ \mathfrak{A} \\ \mathfrak{A} \\ \mathfrak{A} \\ \mathfrak{A} \\ \mathfrak{A} \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ -1 \\ -1 \end{bmatrix}$ b_{0} $b_{0} = 2, y = 1, z = -1$

Greenp-y Assignment-8

Q.2. Solve the following system of meg3 by matrix method. x+2y+z=4, 2x+y=3, x+z=2 solution: The three egis are $\frac{7}{2} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3} = 3$ + 2=2 In matrix form these eggs can be written as $\begin{bmatrix} 1 & 2 & 1 & | & 7 \\ 2 & 1 & 0 & | & 9 \end{bmatrix} = \begin{bmatrix} 7 \\ 3 \\ 1 \\ 2 \end{bmatrix}$ Assume that; $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}, X = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}, B = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}$ ST AX -B $\Rightarrow X = A^{-1}B = (ad)A B = tat$ Det A = $\begin{vmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 0 \end{vmatrix}$ = 1(1-0) - 2(2-0) + 1(0-1)= $1 - 4 - 1 = -4 \neq 0$ AS [A] = 0. & B = 0 SO AT exists $\Rightarrow x = A^T B = \frac{(adj A) \cdot B}{|A|}$ (1) Co=factors of matrix A are $A_{11} = (-1)^{2}(1-0) = 1$ $A_{12} = (-1)^3 (2-0) = -2$ $A_{13} = (-1)^{1} ((-1)) = -1$ $A_{21} = (-1)^3 (2-0) = -2$ $A_{22} = (-1)^{4} (1-1) = 0$ $A_{23} = (-1)^{5} (2-2) = 2$ $A_{21} = (-1)^{1} (0 - 1) = -1$ $A_{32} = (-1)^5 (2-2) = 2$ $A_{32} = (-1)^{6} (1 - 4) = -3$

So the cofactors matrix of A is
$$\begin{bmatrix} 1 & -2 & -1 \\ -2 & 0 & 2 \\ -1 & 2 & -3 \end{bmatrix}$$

Transpose of the contractor matrix
$$A = \begin{bmatrix} 1 & -2 & -1 \\ -2 & 0 & 2 \\ -1 & 2 & -3 \end{bmatrix} = acli A$$

:. Now argit A.B

$$= \begin{bmatrix} 1 & -2 & -1 \\ -2 & 0 & 2 \\ -1 & 2 & -3 \end{bmatrix} \begin{bmatrix} 9 \\ 3 \\ 2 \\ -1 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & -4 \\ -8 + 0 + 4 \\ -9 & +6 - 6 \end{bmatrix} = \begin{bmatrix} 9 - 4 \\ -4 \\ -4 \end{bmatrix}$$

Note So eq²(1) gives;

$$X = \frac{(adj A) B}{[A]} = \frac{1}{-Y} \begin{bmatrix} -y \\ -y \end{bmatrix} = \begin{bmatrix} a \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 7 \\ 7 \\ 2 \end{bmatrix} = \begin{bmatrix} a \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

So n=1=2, y=1 & z=1 /200

Ϊ.

Assignment #8
Assignment #8
Latit kumar shukla
& Robul yadar
OT-G

Solve the system of equations by matrix method.

$$2+y+2 = 6$$

 $2+2y+3z = 14$
 $7+4y+9z = 36$
Using Graves-elimination method.
 $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ 14 \\ 26 \end{pmatrix}$
Subtracting $2nd = 3nd$ yow, using now set.
 $\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ 8 \\ 30 \end{pmatrix}$

Multiply eq. now 2nd with 3 & subtract 3rd from 1/2 2nd 2001. We get,

$$\begin{bmatrix} 0 & 3 & 6 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} = \begin{pmatrix} 6 \\ 24 \\ 6 \end{bmatrix}$$

$$2 + y + z = 6$$

$$3y + 6z = 24$$

$$2z = 6$$

Back Substitution

1

Z= 3

:

y+22=8 y = 8 - 6 = 2X+Y+Z=6 $\chi = 6 - 5 = 1$

x=1, y=2, z=3

٣

e i

$$\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{15}}}}}_{\text{Physical Research Laboratory, Ahmedabad}}_{\text{Solve Hu exp.4 kay mathix mithed :>}} \underbrace{\underbrace{\underbrace{\underbrace{\underbrace{Group - 8}}_{\text{Assignment - 8}}}_{\text{Assignment - 8}}$$

$$\frac{1 + 1 + 1}{1 + 2 + 3}; \frac{1 + 2y + 32 = 4}{1 + 2y + 32 = 4}; \frac{1 + 4y + 92 = 6}{1 + 4y + 92 = 6}$$
Not can write,
$$\begin{pmatrix} 1 + 1 + 1 \\ 1 + 2 + 3 \\ 1 + 4 + 9 \end{pmatrix} \begin{pmatrix} n \\ 2 + 1 \end{pmatrix} = \begin{pmatrix} n \\ 4 \\ -6 \end{pmatrix}$$

$$\stackrel{\text{Ax}}{=} \begin{pmatrix} n \\ 4 \\ -2 \end{pmatrix}$$

$$\frac{n + 4y + 92 = 6}{6}$$
Now,
$$\begin{vmatrix} A \\ A \\ = \begin{pmatrix} 1 + 1 + 1 \\ 1 + 2 + 3 \\ 1 + 4 + 9 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} n \\ 4 \\ -2 \end{pmatrix}$$

$$\frac{n + 4y + 92 = 6}{6}$$
Now,
$$\begin{vmatrix} A \\ A \\ = \begin{pmatrix} 1 + 1 + 1 \\ 1 + 2 + 3 \\ 1 + 4 + 9 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 1 - 2 \\ 1 + 2 + 3 \\ -1 + 1 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 1 - 2 \\ 1 + 2 + 3 \\ -1 + 1 \end{pmatrix} = \frac{1}{1} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 1 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 1 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 1 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 1 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1 + 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 + 2 - 2 \\ -1$$

$$a_{32} = (4)^{342} \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} = -2, \quad q_{53} = (-1)^{543} \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix}$$

= 1
Go factor matrin of

$$B = \begin{pmatrix} 4 & -6 & 2 \\ -5 & 8 & -3 \\ 1 & -2 & 1 \end{pmatrix}$$
So, the inverse of A is

$$A^{-1} = \frac{1}{|A|} B^{T} = \frac{1}{2} \begin{pmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1 \end{pmatrix}$$
So, $X = A^{-1} \begin{pmatrix} 3 \\ 4 \\ 2 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ f \\ 6 \end{pmatrix}$

$$= \frac{1}{2} \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$
So, the sot p of the eq.
 $m = 2, \quad y = 1, ad 2 = 0$

ļ

-

Assignment-8

GROUP-10(George & Ritwik)

Question 5:

Solve the following system of equations by matrix method:

$$2x_1 - x_2 + x_3 = 4$$
$$x_1 + x_2 + x_3 = 1$$
$$x_1 - 3x_2 - 2x_3 = 2$$

Answer:

The coefficient matrix would be

$$A = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & -3 & -2 \end{bmatrix}$$

And let's assume that

$$B = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

Therefore the set of equations can be nicely put in the following form

AX = B

Where $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

 $\Rightarrow X = A^{-1}B$

So the whole idea is to fine the inverse of the matrix *A* and then we are done.

$$Adj A = \begin{bmatrix} 1 & 3 & -4 \\ -5 & -5 & 5 \\ -2 & -1 & 3 \end{bmatrix}^{T} = \begin{bmatrix} 1 & -5 & -2 \\ 3 & -5 & -1 \\ -4 & 5 & 3 \end{bmatrix}$$
$$Det A = |A| = -5$$

The inverse matrix would be

$$A^{-1} = \frac{Adj A}{|A|} = -\frac{1}{5} \begin{bmatrix} 1 & -5 & -2\\ 3 & -5 & -1\\ -4 & 5 & 3 \end{bmatrix}$$

$$X = A^{-1}B = -\frac{1}{5} \begin{bmatrix} 1 & -5 & -2 \\ 3 & -5 & -1 \\ -4 & 5 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$
$$\Rightarrow X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

By comparing two sides we can always get the solution

$$x_1 = 1$$

 $x_2 = -1$
 $x_3 = 1$

ASSIGNMENT-08 G-07 Prob-08, We have to determine vank of given 4x4 matrix Griven matrix is $\begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \end{bmatrix}$

2	3	51	
1	3	4-5	
10	-2	10	

Applying Row transformation We can reduce the matrix to Echelon form In Echelon form this matrix is

[1	Ö	0	-67
0	١	0	۱ I
0	0	Ι	2
6	O	Ø	0

clearly this matrin is of rank3 i.e., it is three rows are linearly independent

venkatesh chimi Assignment-8 Duga propod. Gaoup - 11 भौतिक अनुसंधान प्रयोगशाला, अहमदाबाद Physical Research Laboratory, Ahmedabad (7) Find Inverse of motalx (112) by Gouss-Jordon method 231) method Definition! - Let 1/1 be au investible non motorix. suppose that a sequence of elementary row operations reduces 'A' to Identity motily. then the same sequence of elementary row operations when applied to identity matrix yields 3= 1012-10 010-5334 112100 123010 0~ 231 001 1001 4 4 4 R2+ R2-R1, R3-7 R3-2R1 $R_1 \rightarrow R_1 - R_3$ 112 1007 07 (100714-51414) 010-51431414 0011/414-114 01-3-201 3= R1+R1-R2, R3-7R3-R2 3-) $\begin{bmatrix} 1 & 0 & 1 & 2 & -1 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & 0 & -y & -1 & -1 & 1 \end{bmatrix}$ By definition of goves-Jordan R3+ R3/-4 method the inverse of $\begin{bmatrix} 1 & 0 & 1 & 2 & -1 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ \end{bmatrix}$ given matrix is 714 - 514 14 1) -514 314 114 14 114 -114 $R_2 \rightarrow R_2 - R_3$

 $= \begin{pmatrix} 1 & 6/7 & 2/7 & 1/7 & 0 & 0 \\ 0 & 1 & 0 & 1/2 & 5/4 & -3/4 \\ 0 & 0 & 1 & -3/10 & -3/5 & 1/2 \end{pmatrix} R_2 - 3 R_2 - 5/3 R_3$ $= \begin{pmatrix} 1 & 6/7 & 0 & 8/35 & 6/35 & -1/7 \\ 0 & 1 & 0 & Y_2 & 5/4 & -3/4 \\ 0 & 0 & 1 & -3/10 & -3/5 & Y_2 \end{pmatrix} R_1 - \frac{2}{7}R_3$ $= \begin{pmatrix} 1 & 0 & 0 & -\frac{1}{5} & -\frac{9}{10} & \frac{1}{2} \\ 0 & 1 & 0 & \frac{1}{2} & \frac{5}{4} & -\frac{3}{4} \\ 0 & 0 & 1 & -\frac{3}{10} & -\frac{3}{5} & \frac{1}{2} \end{pmatrix} R_1 - \frac{6}{7}R_2.$: The read At is (-1/5 -9/10 1/2) 1/2 5/4 -3/4 -3/10 -3/5 1/2

ана стана 1. стана с

Assignment 8

Group 5: Apurv & Sanjay

Question

9. If $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$, find A⁻¹. Also find two non-singular matrices P and Q such that PAQ = I, where I is the unit matrix and verify that A⁻¹ = QP.

Solution

The combined matrix [A I] is given by

$$\begin{bmatrix} 3 & -3 & 4 & 1 & 0 & 0 \\ 2 & -3 & 4 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

By further row operations,

$$\sim R_1 \mapsto R_1 - R_2 \begin{bmatrix} 1 & 0 & 0 & 1 & -1 & 0 \\ 2 & -3 & 4 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{bmatrix} \sim R_2 \mapsto 2R_2 - R_1 \begin{bmatrix} 1 & 0 & 0 & 1 & -1 & 0 \\ 0 & -3 & 4 & -2 & 3 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim R_3 \mapsto R_2 - 3R_3 \begin{bmatrix} 1 & 0 & 0 & 1 & -1 & 0 \\ 0 & -3 & 4 & -2 & 3 & 0 \\ 0 & 0 & 1 & -2 & 3 & -3 \end{bmatrix} \sim R_2 \mapsto R_2 - 4R_3; R_2 \mapsto \frac{R_2}{-3} \begin{bmatrix} 1 & 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -2 & 3 & -4 \\ 0 & 0 & 1 & -2 & 3 & -3 \end{bmatrix}$$

So finally
$$A^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$$

Now second part of the question is to find Q and P such that QAP = I. The most straight forward answer is to choose either P or Q to be A^{-1} and to choose the other as I.So one of the choice will be

$$P = A^{-1} \qquad \text{and} \qquad Q = \mathbb{I} \tag{0.0.1}$$

Then

$$PAQ = A^{-1}A\mathbb{I} = \mathbb{I} \times \mathbb{I} = \mathbb{I}$$
(0.0.2)

It also satisfies the condition

$$PQ = A^{-1}\mathbb{I} = A^{-1} \tag{0.0.3}$$

We also note that there are infinitely many choice for P and Q which satisfies the condition in the question.

ASSIGNMENT: 8

Givenp 2; Chandana Jinia Sikdave.

Q10. Examine whether the following eque avec consistent & solve them, if they are consistent.

$$n+y+z = 6$$

 $2n+y+3z = 13$
 $5n+2y+z = 12$
 $2m - 3y - 2z = -10$

Sot" - Writing the above eg's in Augmented Matrix form. we get:

١	ŧ	Ą	6
2	1	3	13
5	2	1	12
2	-3	-2	-10]

Carrying out Row operation, we get?

$$\begin{array}{c} k_{2}-2k_{1} \longrightarrow \\ k_{3}-5k_{1} \longrightarrow \\ k_{4}-2k_{1} \longrightarrow \\ \end{array} \begin{array}{c} 1 & 1 & 1 & 1 \\ 0 & -3 & -4 & -18 \\ 0 & -5 & -4 & -22 \\ 0 & -5 & -4 & -22 \\ \end{array} \end{array}$$

$$\begin{array}{c} k_{4}-5k_{2} \longrightarrow \\ 0 & -1 & 1 & 1 \\ 0 & -3 & -4 & -18 \\ 0 & 0 & -9 & -27 \\ \end{array}$$

$$\begin{array}{c} 1 & k_{4} \longrightarrow \\ 0 & -1 & 1 & 1 \\ 0 & -3 & -4 & -18 \\ 0 & 0 & -1 & 1 & 1 \\ 0 & -3 & -4 & -18 \\ 0 & 0 & -1 & -3 \\ \end{array}$$

$$\begin{array}{c} 1 & k_{4} \longrightarrow \\ 0 & -1 & 1 & 1 \\ 0 & -3 & -4 & -18 \\ 0 & 0 & -1 & -3 \\ \end{array}$$

$$\begin{array}{c} 1 & k_{4} \longrightarrow \\ 0 & -1 & 1 & 1 \\ 0 & -3 & -4 & -18 \\ 0 & 0 & -1 & -3 \\ \end{array}$$

 $\begin{bmatrix} 0 & -3 & -4 & -18 \\ 0 & 0 & -1 & -3 \\ 0 & 0 & -1 & -3 \end{bmatrix}$

$$\begin{array}{c} R_{3}-R_{2} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 6 \\ 0 & -3 & 3 & 3 \\ 0 & 0 & -7 & -21 \\ 0 & 0 & -7 & -3 \end{array} \right] \\ \frac{1}{7}R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 6 \\ 0 & -3 & 3 & 3 \\ 0 & 0 & -1 & -3 \\ 0 & 0 & -1 & -3 \\ 0 & 0 & -1 & -3 \\ 0 & 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 6 \\ 0 & -3 & 3 & 3 \\ 0 & 0 & -1 & -3 \\ 0 & 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 6 \\ 0 & -3 & 3 & 3 \\ 0 & 0 & -1 & -3 \\ 0 & 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 6 \\ 0 & -3 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 6 \\ 0 & -3 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 6 \\ 0 & -3 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 6 \\ 0 & 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 6 \\ 0 & 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 6 \\ 0 & 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 6 \\ 0 & 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 6 \\ 0 & 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 6 \\ 0 & 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 6 \\ 0 & 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 6 \\ 0 & 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 6 \\ 0 & 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 0 \\ 0 & 0 \end{array} \right] \\ R_{4}-R_{3} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 0 \\ 0 & 0 \end{array} \right] \\ R_{4}-R_{4} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 0 \\ 0 & 0 \end{array} \right] \\ R_{4}-R_{4} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 0 \\ 0 & 0 \end{array} \right] \\ R_{4}-R_{4} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 0 \\ 0 & 0 \end{array} \right] \\ R_{4}-R_{4} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 0 \\ 0 & 0 \end{array} \right] \\ R_{4}-R_{4} \longrightarrow \left[\begin{array}{c} 1 & 1 & 1 & 1 \\ 0 & 1 \end{array} \right] \\ R_{4}-R_{4}$$

4. -4. -

ASSIGNMENT 5

GROUP-2 CHANDANA JINIA

Show that
$$\tan' z = \frac{i}{z} \log \frac{i+z}{i-z}$$

let $lan'z = \chi$ $z = tan \chi$

- r - $Z = \frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}} \times \frac{1}{i}$
 - $xi = \frac{e^{ix}}{e^{ix}} + e^{-ix}$

$$\frac{z}{-i} = \frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}}$$

$$\frac{z}{i} = \frac{e^{-ix} - e^{+ix}}{e^{ix} + e^{-ix}}$$

 $\frac{i+2}{i-2} = \frac{e^{-i\lambda} + e^{i\lambda} - e^{-i\lambda}}{e^{-i\lambda} + e^{i\lambda} - e^{-i\lambda} + e^{i\lambda}}$

$$\frac{\dot{\iota}+2}{\dot{\iota}-2} = \frac{e^{-i\chi}}{e^{i\chi}}$$

 $\frac{i+2}{i-2} = e^{-2i\lambda}$

$$\mathcal{X} = \frac{1}{2(-i)} \log\left(\frac{i+z}{i-z}\right)$$

$$\tan^{-1}z = \frac{i}{2} \log\left(\frac{i+z}{i-z}\right)$$

____ X _____

. 1

Assignment in 7.
Assignment in 7.
Factorize the matrix
$$A = \begin{bmatrix} s & -2 & 1 \\ T & 1 & -5 \\ 3 & 7 & 4 \end{bmatrix}$$
 with the dorm
Let , where L is brown triangular and n is upper triangular
matrix.
Catogoing out there operations to make the metrix in how-
center form, use get:
 $A = \begin{bmatrix} s & -2 & 1 \\ T & 1 & -5 \\ 3 & 7 & 4 \end{bmatrix}$
 $k_2 - k_3 \rightarrow \begin{bmatrix} s & -2 & 1 \\ T & 1 & -5 \\ 3 & 7 & 4 \end{bmatrix}$
 $k_2 - k_3 \rightarrow \begin{bmatrix} s & -2 & 1 \\ -1 & -6 & -9 \\ 6 & 3 & 4 \end{bmatrix}$
 $k_2 - k_3 \rightarrow \begin{bmatrix} s & -2 & 1 \\ -1 & -6 & -9 \\ 3 & 7 & 4 \end{bmatrix}$
 $k_3 + 3k_2 \rightarrow \begin{bmatrix} s & -2 & 1 \\ -1 & -4 & -10 \\ 0 & -5 & -26 \end{bmatrix}$
 $sk_2 + k_1 \rightarrow \frac{1}{s} \begin{bmatrix} s & -2 & 1 \\ -1 & -4 & -10 \\ 0 & -5 & -26 \end{bmatrix}$
 $k_8 \times -\frac{29}{s} \rightarrow \frac{1}{s} \times -\frac{s}{22} \begin{bmatrix} s & -2 & 1 \\ 0 & -92 & -149 \\ 0 & -92 & -14$

RS.

Ans :

$$R_3 + R_2 \longrightarrow \begin{bmatrix} 5 & -2 & 1 \\ 0 & 22 & -249 \\ 0 & 0 & 327/5 \end{bmatrix}$$

To get L, we write the elementary matrices and their inverses for each of the operation above.

det us have a unit matrix
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $E_1 = R_2 - R_3 \Longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -9 \\ 0 & 0 & 1 \end{bmatrix}$
 $A = E_1^{-1} = \begin{bmatrix} 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

$$E_2 = R_2 - R_1 \implies \begin{vmatrix} \cdot & \cdot & \cdot & \cdot \\ - \cdot & \cdot & - \cdot \end{vmatrix} \therefore E_2 = \begin{vmatrix} \cdot & \cdot & \cdot \\ 0 & 0 & 1 \end{vmatrix} \therefore E_2 = \begin{vmatrix} \cdot & \cdot & \cdot \\ 0 & 0 & 1 \end{vmatrix}$$

$$E_3 = R_3 + 3R_2 \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & -1 \\ -3 & 3 & -2 \end{bmatrix}$$

$$E_4$$
: $SR_2 + R_1 \rightarrow \frac{1}{5} \begin{bmatrix} 1 & 0 & 0 \\ -4 & 5 & -5 \\ -3 & 3 & -2 \end{bmatrix}$

$$E_{S} = k_{3} \begin{pmatrix} -22 \\ \overline{5} \end{pmatrix} = \frac{1}{22} \begin{bmatrix} -4/5 & 1 & -1 \\ -4/5 & 1 & -1 \\ -\frac{66}{5} & \frac{+66}{5} & -\frac{44}{5} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ . & E_{S} = \end{bmatrix} \end{bmatrix}$$

$$E_{k} = R_{3} + R_{2} \longrightarrow \left[\begin{array}{cccc} 1 & 0 & 0 \\ -\frac{1}{22} \left[\begin{array}{c} -\frac{1}{10} \right]_{5} & 1 & -1 \\ -\frac{1}{15} & \frac{1}{57} \right]_{5} & -\frac{1}{51} \\ -\frac{1}{15} & \frac{1}{57} \left[\begin{array}{c} 13/5 & 0 & 0 \\ 189/25 & -5415 & 1 \\ 107/25 & 6715 & 1 \end{array} \right] \\ \\ Ne howe \\ \\ M = \left[\begin{array}{c} c & -2 & 1 \\ 0 & -22 & -49 \\ 0 & 0 & 32415 \end{array} \right] \\ \\ L = C_{1}^{-1} C_{2}^{-1} C_{3}^{-1} C_{4}^{-1} C_{5}^{-1} C_{6}^{-1} \\ 0 & 0 & \frac{3241}{5} \end{array} \\ \\ L = C_{1}^{-1} C_{2}^{-1} C_{3}^{-1} C_{4}^{-1} C_{5}^{-1} C_{6}^{-1} \\ \frac{1}{25} C_{3}^{-1} C_{4}^{-1} C_{5}^{-1} C_{6}^{-1} \\ \frac{1}{25} C_{5}^{-1} C_{5}^{-1} C_{5}^{-1} C_{6}^{-1} \\ \frac{1}{25} C_{5}^{-1} C_{5}^{-1} C_{5}^{-1} C_{6}^{-1} \\ \frac{1}{25} C_{5}^{-1} C_{5}^{-1} C_{5}^{-1} \\ \frac{1}{25} C_{5}^{-1} C_{5}^{-1} C_{5}^{-1} \\ \frac{1}{25} C_{5}^{-1} C_{5}^{-1} C_{5}^{-1} \\ \frac{1}{25} C_{5}^{-1} \\$$

$$= -\frac{22}{13} \begin{bmatrix} 13/5 & 0 & 0 \\ -27/632 & 15002 & -233 \\ 275 & 55 & 11 \\ -16163 & 659 & -127 \\ 550 & 5 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} -22/5 & 0 & 0 \\ \frac{55264}{325} & -2368 & 466 \\ \hline 325 & 5 & 13 \\ 002211 & 00000 \\ \hline 00000 \\ 00000$$

Factores are:

___X ____

:

. . .

Sate: 24.08.2012 Assignment- 8 Group -9 🛆 भौतिक अनुसंधान प्रयोगशाला, अहमदाबाद Physical Research Laboratory, Ahmedabad 11. Solve completely the following system of equations o 2+y-22+300=0 $\chi - 2y + 2 - 40 = 0.$ 42+y - 52+820 =0 5x-7y+22-60=0, = $det A = \begin{pmatrix} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & -1 \\ 4 & 1 & -5 & 8 \\ 5 & -7 & 2 & -1 \end{pmatrix}$ $X = \begin{pmatrix} n \\ d \\ 2 \\ w \end{pmatrix} \qquad O = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ So, the matrix equation is . AX =0 Deléminant of the lgt is . $\Delta = 1\left[-2\left(5-16\right)-\left(-1+56\right)-1\left(2-35\right)\right]-1\left[1\left(5-16\right)-\left(-4-40\right)\right]$ -1(8+25)]-2[1(-1+56)+2(-4-40)-1(-28-5)]-3[1(2-35)+2(8725)+1(-28-5)] =0. the equations le, as the determinant is geven are inconsistent. Aus D, KO