Assignment - 7
Problem-1 For what values of x, the matrix
$A=\left[\begin{array}{ccc}3-x & 2 & 2 \\ 2 & 4-x & 1 \\ -2 & -4 & -1-x\end{array}\right]$ is singular?
Sole:- For matrix to be singular, $|A|=0$

$$
\begin{aligned}
& \therefore\left|\begin{array}{ccc}
3-x & 2 & 2 \\
2 & 4-x & 1 \\
-2 & -4 & -1-x
\end{array}\right|=0 \\
& \therefore\left|\begin{array}{ccc}
7-x & 2 & 2 \\
7-x & 4-x & 1 \\
-7-x & -4 & -1-x
\end{array}\right|=0 \quad\left[C_{1} \rightarrow C_{1}+C_{2}+C_{3}\right] \\
& \left|\begin{array}{ccc}
7-x & 2 & 2 \\
0 & 2-x & -1 \\
0 & -2 & 1-x
\end{array}\right|=0\left[\begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}+R_{1}
\end{array}\right]
\end{aligned}
$$

on expanding by c_{1}, we get

$$
\begin{aligned}
& (7-x)\left|\begin{array}{cc}
2-x & -1 \\
-2 & 1-x
\end{array}\right|=0 \\
& (7-x)\left\{2-2 x-x+x^{2}-2\right\}=0 \\
& (7-x)\left(x^{2}-3 x\right)=0 \\
& x(x-3)(x-7)=0 \\
& x=0,3,7
\end{aligned}
$$

Assignment \#7
Labe Kumar shula \& Raker yoda
Group- M-6
Ques.
Express $\left[\begin{array}{ccc}2 & 5 & -7 \\ -9 & 12 & 4 \\ 15 & -13 & 6\end{array}\right]$ as the sum of
\rightarrow a lower triangular matrix \&
\rightarrow an upper triangular matrix with zero leading diagonal.
Sol.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 5 & -7 \\
-9 & 12 & 4 \\
15 & -13 & 6
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
2 & 0 & 0 \\
-9 & 12 & 0 \\
15 & -13 & 6
\end{array}\right]+\left[\begin{array}{ccc}
0 & 5 & -7 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right] \\
& \text { Lower-triangular } \\
& \text { matrix } \\
& \text { upper triangular } \\
& \text { matrix }
\end{aligned}
$$

ASSIGNMENT-OT

Prob.3. $\left[\begin{array}{ccc}2 & 1 & -1 \\ 4 & -5 & 6 \\ -3 & 7 & 3\end{array}\right]\left[\begin{array}{cc}3 & 1 \\ -6 & 4 \\ -2 & 5\end{array}\right]\left[\begin{array}{cc}5 & 3 \\ -2 & 1\end{array}\right]$
first consider underlined pant

$$
\begin{aligned}
& {\left[\begin{array}{cc}
15-2 & 9+1 \\
-30-8 & -18+4 \\
-10-10 & -6+5
\end{array}\right]} \\
& =\left[\begin{array}{cc}
13 & 10 \\
-38 & -14 \\
-20 & -1
\end{array}\right]
\end{aligned}
$$

Now multiply $\left[\begin{array}{ccc}2 & 1 & -1 \\ 4 & -5 & 6 \\ -3 & 7 & 3\end{array}\right]$ and $\left[\begin{array}{cc}13 & 10 \\ -38 & -14 \\ -20 & -1\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
26 \cdot-38+20 & 7 \\
122 & 104 \\
-365 & -131
\end{array}\right] } \\
&=\left[\begin{array}{cc}
8 & 7 \\
122 & 104 \\
-365 & -131
\end{array}\right]
\end{aligned}
$$

Assignmsent - 7
$G_{r}-L$
Newton Norlt, Vikas Chand.
Q.4 If $A=\left(\begin{array}{ccc}1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2\end{array}\right)$ \& I in the vint
mation of arder 3, evaluate $A^{2}-3 A+91$.
n^{n}

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & -2 & 3 \\
2 & 3 & -1 \\
-3 & 1 & 2
\end{array}\right) \\
& A^{2}=A A=\left(\begin{array}{ccc}
1 & -2 & 3 \\
2 & 3 & -1 \\
-3 & 1 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & -2 & 3 \\
2 & 3 & -1 \\
-3 & 1 & 2
\end{array}\right) \text {. } \\
& =\left(\begin{array}{lll}
1-4-9 & -2-6+3 & 3+2+6 \\
2+6+3 & -4+9-1 & 6-3-2 \\
-3+2-6 & 6+3+2 & -9-1+4
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-12 & -5 & 11 \\
11 & 4 & 1 \\
-7 & 11 & -6
\end{array}\right) . \\
& \therefore 3 A=3\left(\begin{array}{ccc}
1 & -2 & 3 \\
2 & 3 & -1 \\
-3 & 1 & 2
\end{array}\right)=\left(\begin{array}{ccc}
3 & -6 & 9 \\
6 & 9 & -3 \\
-9 & 3 & 6
\end{array}\right) \text {, } \\
& 9 I=g\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{array}\right) \\
& A^{2}-3 A+9 T=\left(\begin{array}{ccc}
-12 & -5 & 11 \\
11 & 4 & 11 \\
7 & 11 & -6
\end{array}\right)-\left(\begin{array}{ccc}
3 & -6 & 9 \\
6 & 9 & -3 \\
-9 & 3 & 6
\end{array}\right)+\left(\begin{array}{lll}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{array}\right) . \\
& =\left(\begin{array}{ccc}
-12-3+9 & -5+6+0 & 11-9+0 \\
11-6+0 & 4-9+9 & 11+3+0 \\
-6+9+0 & 11-3+0 & -6-6+9
\end{array}\right)=\left(\begin{array}{ccc}
-6 & 1 & 2 \\
5 & 4 & 14 \\
2 & 8 & -3
\end{array}\right)
\end{aligned}
$$

$$
=\left(\begin{array}{ccc}
-6 & 1 & 2 \\
5 & 4 & 14 \\
2 & 8 & -3
\end{array}\right)
$$

ASSIGNMENT:I

Qi: Faclonize the matrix:

$$
A=\left[\begin{array}{ccc}
5 & -2 & 1 \\
7 & 1 & -5 \\
3 & 7 & 4
\end{array}\right]
$$

into form $L 4$, where L is tower thiang alar and 4 is upper treangnts matrix.

Sol: Let,

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
5 & -2 & 1 \\
7 & 1 & -5 \\
3 & 7 & 4
\end{array}\right]=\left(\begin{array}{lll}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right)\left(\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right)} \\
& =\left(\begin{array}{ccc}
l_{11} u_{11} & l_{11} u_{12} & l_{11} l_{13} \\
l_{21} u_{11} & l_{21} u_{22}+l_{22} u_{22} & l_{21} u_{13}+l_{22} u_{23} \\
l_{31} u_{11} & l_{31} u_{12}+l_{92} u_{22} & l_{31} u_{13}+l_{32} u_{23} \\
l_{33} u_{33}
\end{array}\right. \\
& \therefore \quad l_{11} u_{11}=5 \quad l_{11} u_{12}=-2 \\
& l_{21} u_{11}=7 \quad l_{21} u_{12}+l_{22} u_{22}=1 \\
& Q_{11} U_{13}=1 \\
& l_{21} 4_{13}+l_{22} 4_{23}=-5 \\
& \ell_{31} 4_{11}=3 \quad \ell_{31} 4_{12}+l_{32} 4_{22}=7 \\
& \ell_{31}, u_{13}+\ell_{32} u_{23}=4 \\
& +\ell_{33} u_{33}
\end{aligned}
$$

Since no. of variables are move than mo. of ens, hence we need some restrictions to gel the answer.

Let, $l_{11}=l_{22}=l_{33}=1$.

$$
\therefore \quad \begin{array}{ll}
l_{11} & =5 \\
l_{21} & =7 / 5 \quad u_{12}=-2 \\
l_{31} & =3 / 5
\end{array} \quad \begin{aligned}
& 4_{13}=1
\end{aligned}
$$

Now, $l_{2,} U_{12}+l_{22} u_{22}=1$

$$
\therefore \frac{7}{5} \cdot(-2)+1 \cdot u_{22}=1 \quad \therefore-\frac{14}{5}+u_{22}=1 \quad \therefore u_{22}=\frac{19}{5}
$$

Also, $l_{21} U_{13}+l_{22} 4_{23}=-5$

$$
\begin{array}{r}
\therefore \frac{7}{5} \cdot 4_{13}+1 \cdot u_{23}=-5 \tag{1}\\
\therefore \frac{7}{5} \cdot 1+4_{23}=-5 \\
\therefore U_{23}=-5-\frac{7}{5}=\frac{-32}{5}
\end{array}
$$

Again, $l_{31} \mathrm{Cl}_{12}+\mathrm{O}_{32} \mathrm{U}_{22}=7$

$$
\begin{gathered}
\therefore \quad \frac{3}{5} \cdot(-2)+132\left(\frac{19}{5}\right)=7 \\
\Rightarrow \quad \frac{-6}{5}+l_{32}\left(\frac{19}{5}\right)=7 \\
\therefore l_{32}\left(\frac{19}{5}\right)=7+\frac{6}{5}=\frac{41}{5} \\
\therefore \quad l_{32}=41 / 19 .
\end{gathered}
$$

ALso, we have: $l_{31} U_{13}+l_{32} u_{23}+l_{33} U_{33}=4$

$$
\begin{aligned}
& \Rightarrow \frac{3}{5} \cdot 1+\frac{41}{19} \cdot \frac{32}{5}+1 \cdot 433=4 \\
& \Rightarrow \quad \frac{3}{5}-\frac{1312}{95}+433=4 \\
& \Rightarrow \quad \frac{57-1312}{95}+433=4 \\
& 433=327 / 19 . \\
& \therefore d t=\left(\begin{array}{ccc}
1 & 0 & 0 \\
3 / 5 & 1 & 0 \\
3 / 5 & 41 / 19 & 1
\end{array}\right) \\
& u_{1}=\left(\begin{array}{ccc}
5 & -2 & 1 \\
0 & 19 / 5 & -32 / 5 \\
0 & 0 & 327 / 19
\end{array}\right)
\end{aligned}
$$

Group-4 Assignment -7
$6 \cdot Q \rightarrow$ Express $\left[\begin{array}{ccc}0 & 5 & -3 \\ 1 & 1 & 1 \\ 4 & 5 & 9\end{array}\right]$ as the sum of a symmetric \& a skew-symmetrcic matrix.
Ans.- We know any square matrix A can be expressed as the sum of a symmetric os skew symmetric matrix.

$$
\text { i.e. } A=\frac{1}{2}\left(A+A^{\top}\right)+\frac{1}{2}\left(A-A^{\top}\right)=B+c(\text { say })
$$

where $\frac{1}{2}\left(A+A^{\top}\right)=B=$ symmetric matrix

$$
\frac{1}{2}\left(A-A^{\top}\right)=C=\text { skew symmetric matrix }
$$

Assure $A=\left[\begin{array}{ccc}0 & 5 & -3 \\ 1 & 1 & 1 \\ 4 & 5 & 9\end{array}\right]$

$$
\therefore \quad A^{\top}=\left[\begin{array}{ccc}
0 & 1 & 4 \\
5 & 1 & 5 \\
-3 & 1 & 9
\end{array}\right]
$$

Now $B=\frac{1}{2}\left(A+A^{\top}\right)=\frac{1}{2}\left\{\left[\begin{array}{ccc}0 & 5 & -3 \\ 1 & 1 & 1 \\ 4 & 5 & 9\end{array}\right]+\left[\begin{array}{ccc}0 & 1 & 4 \\ 5 & 1 & 5 \\ -3 & 1 & 9\end{array}\right]\right\}$

$$
=\frac{1}{2}\left[\begin{array}{ccc}
0 & 6 & 1 \\
6 & 2 & 6 \\
1 & 6 & 18
\end{array}\right]=\left[\begin{array}{ccc}
0 & 3 & \frac{1}{2} \\
3 & 1 & 3 \\
\frac{1}{2} & 3 & 9
\end{array}\right]
$$

$$
\text { 良 } \begin{aligned}
C=\frac{1}{2}\left(A-A^{\top}\right) & =\frac{1}{2}\left\{\left[\begin{array}{ccc}
0 & 5 & -3 \\
1 & 1 & 1 \\
4 & 5 & 9
\end{array}\right]-\left[\begin{array}{ccc}
0 & 1 & 4 \\
5 & 1 & 5 \\
-3 & 1 & 9
\end{array}\right]\right\} \\
& =\frac{1}{2}\left[\begin{array}{ccc}
0 & 4 & -7 \\
-4 & 0 & -4 \\
7 & 4 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 2 & -\frac{7}{2} \\
-2 & 0 & -2 \\
\frac{7}{2} & 2 & 0
\end{array}\right]
\end{aligned}
$$

$$
\text { Hence }\left[\begin{array}{ccc}
0 & 5 & -3 \\
1 & 1 & 1 \\
4 & 5 & 9
\end{array}\right]=\left[\begin{array}{ccc}
0 & 3 & \frac{1}{2} \\
3 & 1 & 3 \\
\frac{1}{2} & 3 & 9
\end{array}\right]+\left[\begin{array}{ccc}
0 & 2 & -\frac{7}{2} \\
-2 & 0 & -2 \\
\frac{7}{2} & 2 & 0
\end{array}\right]
$$

भौतिक अनुसंधान प्रयोगशाला, अहमदाबाद
Physical Research Laboratory, Ahmedabad
Assignment - 7
Group 10. (Bivin \& Ritwik).

Soln:

$$
\begin{aligned}
A^{-1} & =\frac{1}{|A|} \operatorname{adj} A \\
|A| & =1(0)+3(2)+2(8) \\
& =22
\end{aligned}
$$

$$
\text { Cofactor matrix of } A=\left[\begin{array}{ccc}
0 & -2 & 8 \\
11 & -1 & -7 \\
0 & -4 & 6
\end{array}\right]
$$

$\operatorname{adj} A=$ Trawspose of cofachormatrix of A.

$$
\begin{gathered}
\Rightarrow \operatorname{adg} A=\left[\begin{array}{ccc}
0 & 11 & 0 \\
-2 & -1 & -4 \\
8 & -7 & 6
\end{array}\right] \\
A^{-1}=\frac{1}{|A|} \operatorname{adj} A .
\end{gathered}
$$

$$
A^{-1}=\frac{1}{22}\left[\begin{array}{ccc}
0 & 11 & 0 \\
-2 & -1 & -4 \\
8 & -7 & 6
\end{array}\right]
$$

Gr-11
Assignment - 7
venkateshchinni Duxgaprasad

- भौतिक अनुसंधान प्रयोगशाला, अहमदाबाद

Physical Research Laboratory, Ahmedabad
(8) Show that $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]=\left[\begin{array}{ccc}1 & -\tan \theta_{2} \\ \tan \theta \theta_{2} & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \theta /_{2} \\ -\tan \theta / 2 & 1\end{array}\right]^{-1}$
sol
$=$ suppose $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

$$
\text { Take }\left[\begin{array}{cc}
1 & \tan \theta_{2} \\
-\tan \theta_{2} & 1
\end{array}\right]^{-1}=\frac{1}{\sec ^{2} \theta_{2}}\left[\begin{array}{cc}
1 & -\tan \theta_{2} \\
\tan \theta_{2} & 1
\end{array}\right] \rightarrow(1)
$$

R.H.S

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & -\tan \theta_{2} \\
\tan \theta_{2} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \tan \theta_{2} \\
-\operatorname{tac} / 2 & 1
\end{array}\right]^{-1}} \\
& \Rightarrow\left[\begin{array}{cc}
1 & -\tan \theta_{2} \\
\tan \theta_{2} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -\tan \theta_{L} \\
\tan \theta / 2 & 1
\end{array}\right] \frac{1}{\sec _{2}^{v} \theta_{2}}[\because \text { By (1) }] \\
& \Rightarrow \quad \cos ^{2} \theta_{2}\left[\begin{array}{cc}
1 & -\tan \theta 1_{2} \\
\operatorname{taO} L_{2} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -\operatorname{ta} \theta /_{2} \\
\operatorname{taO} 1_{2} & 1
\end{array}\right] \\
& \Rightarrow \quad \cos ^{2} \theta_{2}\left[\begin{array}{ll}
1-\tan ^{2} \theta_{2} & -2 \tan \theta_{2} \\
2 \tan \theta \theta_{2} & 1-\tan ^{2} \theta_{2}
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
\cos ^{2} \theta_{2}-\sin ^{2} \theta_{2} & -2 \sin \theta_{2} \cos \theta_{2} \\
2 \sin _{2} \theta_{2} \cos \theta_{2} & \cos ^{2} \theta_{2}-\sin ^{2} \theta_{2}
\end{array}\right] \quad\left[\begin{array}{l}
\because \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta \\
\sin 2 \theta=2 \sin \theta \sin \theta
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=\text { L.1. . S }
\end{aligned}
$$

Hence proved

Group -8 assignment -7
If $A=\left(\begin{array}{ccc}1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0\end{array}\right)$ and $B=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3\end{array}\right)$, verify that

$$
(A B)^{T}=B^{T} A^{T} \text { and }(A B)^{-1}=B^{-1} A^{-1} \text {. }
$$

Ans:-

$$
A^{\top}=\left(\begin{array}{ccc}
1 & 3 & 4 \\
2 & 0 & 5 \\
-1 & 2 & 0
\end{array}\right) \text { and } B^{\top}=\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 1 \\
0 & 0 & 3
\end{array}\right)
$$

Now,

$$
\begin{align*}
B^{\top} A^{\top} & =\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 1 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{ccc}
1 & 3 & 4 \\
2 & 0 & 5 \\
-1 & 2 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
5 & 3 & 14 \\
1 & 2 & 5 \\
-3 & 6 & 0
\end{array}\right)=(1) \tag{1}
\end{align*}
$$

$$
\begin{align*}
A B & =\left(\begin{array}{ccc}
1 & 2 & -1 \\
3 & 0 & 2 \\
4 & 5 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 1 & 3
\end{array}\right) \\
& =\left(\begin{array}{rrr}
5 & 1 & -3 \\
3 & 2 & 6 \\
14 & 5 & 0
\end{array}\right)-(2)
\end{align*}
$$

So, $(A B)^{T}=\left(\begin{array}{ccc}5 & 3 & 14 \\ 1 & 2 & 5 \\ -3 & 6 & 0\end{array}\right)=B^{T} A^{\top}$ (proved)

$$
|A|=-9
$$

Co-tactor of $A:-$

$$
\left.\begin{aligned}
& a_{11}=(-1)^{1+1}\left|\begin{array}{ll}
0 & 2 \\
5 & 0
\end{array}\right|=-10 \\
& a_{12}=(-1)^{1+2}\left|\begin{array}{ll}
3 & 2 \\
4 & 0
\end{array}\right|=8 \\
& a_{13}=(-1)^{1+3}\left|\begin{array}{ll}
3 & 0 \\
4 & 5
\end{array}\right|=15 \\
& a_{21}=(-1)^{2+1}\left|\begin{array}{cc}
2 & -1 \\
5 & 0
\end{array}\right|=-5 \\
& a_{22}=(-1)^{2+2}\left|\begin{array}{ll}
1 & -1 \\
4 & 0
\end{array}\right|=4 \\
& a_{23}=(-1)^{2+3}\left|\begin{array}{cc}
1 & 2 \\
4 & 5
\end{array}\right|=3 \\
& a_{13}=(-1)^{1+3}\left|\begin{array}{cc}
2 & -1 \\
0 & 2
\end{array}\right|=4 \\
& a_{23}=(-1)^{2+3}\left|\begin{array}{cc}
1 & -1 \\
3 & 2
\end{array}\right|=-5 \\
& a_{33}=(-1)^{2+1} \mid 3 \\
& 1
\end{aligned} \right\rvert\, \begin{array}{ll}
2 & -6
\end{array}
$$

$$
\text { co-factor matrix of } A=\left(\begin{array}{ccc}
-10 & 8 & 15 \\
-5 & 4 & 3 \\
4 & -5 & -6
\end{array}\right)
$$

So,

$$
A^{-1}=-\frac{1}{9}\left(\begin{array}{ccc}
-10 & -5 & 4 \\
8 & 4 & -5 \\
15 & 3 & -6
\end{array}\right)
$$

$$
\begin{aligned}
& B=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 1 & 3
\end{array}\right) \\
& B_{11}=(-1)^{1+1}(3-0)=3, B_{23}=(-1)(1-0)=-1 \\
& B_{12}=-1(6-0)=-6, B_{31}=0 \\
& B_{13}=(1)(2-0)=2,1 \quad B_{32}=0 \\
& B_{21}=0 \\
& B_{22}=(1)(3-0)=3 \\
& B_{33}=1.1=1 \\
& |B|=3 \\
& B^{-1}=\frac{1}{3}\left[\begin{array}{ccc}
3 & 0 & 0 \\
-6 & 3 & 0 \\
2 & -1 & 1
\end{array}\right] \\
& (A B)=\left(\begin{array}{ccc}
5 & 1 & -3 \\
3 & 2 & 6 \\
14 & 5 & 0
\end{array}\right) \\
& A B_{11}=(1)(0-30)=-30 \\
& A B_{12}=(-1)(0-84)=+84 \\
& A B_{13}=(1)(15-28)=-13 \\
& A B_{21}=(-1)(0+15)=-15 \quad \text {, } A-B_{31}=(1)(6+6)=12 \\
& A B_{22}=(1)(0-1-42)=42, A B_{32}=(-1)(30+9)=-39 \\
& A B_{23}=(-1)(25-14)=-11, A B_{33}=(1)(10-3)=7 \\
& \text { ARE }=1
\end{aligned}
$$

$$
\begin{aligned}
|A B|= & 5(0-30)-1(0-84)+(-3)(15-28) \\
= & -150+84+39 \\
= & -27 \\
(A B)^{-1}= & -\frac{1}{27}\left|\begin{array}{ccc}
-30 & -15 & 12 \\
+84 & 42 & -39 \\
-13 & -11 & 7
\end{array}\right| \\
B^{-1} A^{-1}= & \left.\left.\frac{1}{27}\left(\begin{array}{ccc}
3 & 0 & 0 \\
-6 & 3 & 0 \\
2 & -1 & 1
\end{array}\right) \right\rvert\, \begin{array}{ccc}
-10 & -5 & 4 \\
8 & 4 & -5 \\
15
\end{array}\right) \\
= & -1\left[\begin{array}{ccc}
-30 & -15 & 12 \\
+84 & 42 & -39 \\
-13 & -11
\end{array}\right] \\
& =(A B)
\end{aligned}
$$

2ate: $24.0 \% .2012$
Assignment -7 .
Group-9
भौतिक अनुसंधान प्रयोगशाला, अहमदाबाद
Physical Research Laboratory, Ahmedabad
10 If $D=\operatorname{diag}\left[d_{1}, d_{2}, \ldots, d_{n}\right] ; d_{1}, d_{2}, \ldots, d_{n} \neq 0$; prove that

$$
\begin{aligned}
D^{-1} & =\operatorname{diag}\left[d_{1}^{-1}, d_{2}^{-1}, \ldots,\right. \\
\Rightarrow & \left.d_{n}^{-1}\right] \\
D & =\left(\begin{array}{ccccc}
d_{1} & 0 & 0 & \cdots & 0 \\
0 & d_{2} & 0 & \cdots & 0 \\
0 & \vdots & \cdots & 0 \\
\vdots & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & d_{u}
\end{array}\right)
\end{aligned}
$$

\therefore delerinant of D in: $\Delta=d_{1} \cdot d_{2} \cdots \cdot d n$

$$
\begin{aligned}
& =\prod_{i=1}^{n} d_{i} \\
& \operatorname{adjoint} \lambda=\left(\begin{array}{ccccc}
d_{2} \ldots d_{n} & 0 & 0 & \cdots & 0 \\
0 & d_{3} \ldots d_{1} d_{1} & 0 & \ldots & 0 \\
0 & 0 & d_{k_{4}} \ldots d_{u} \cdot d_{1} \cdot d_{2} & 0 & \cdots \\
0 & \cdots & \cdots & 0 & \ldots
\end{array} d_{n-1} \ldots d_{1}\right)^{\top} \text {. } \\
& =\left(\begin{array}{cccc}
\prod_{i=2}^{n} d_{i} & 0 & \cdots & 0 \\
0 & \prod_{i=1}^{n} d_{i} & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
0 & \cdots-1 & 0
\end{array}\right)
\end{aligned}
$$

So, $D^{-1}=\frac{\text { adjoirt } D}{\Delta}=\prod_{i=1}^{n}\left(\begin{array}{cccc}\prod_{i=2}^{\infty} d_{i} & 0 & \cdots & \cdots \\ 0 & \prod_{\substack{i=1 \\ i \neq 2}} & & \cdots \\ 0 & \cdots & 0 \\ 0 & \cdots & \cdots & \prod_{i=1}^{n-i} \\ 0 & d_{i}\end{array}\right)$

$$
\begin{aligned}
& D^{-1}=\left(\begin{array}{ccccc}
1 / d_{1} & 0 & 0 & \cdots & 0 \\
0 & 1 / d_{2} & 0 & \cdots & 0 \\
0 & 0 & \ddots & 1 / d u \\
0 & 0 & \cdots & 1 /{ }^{-1} \\
\therefore D^{-1}=\operatorname{diag}\left[d_{1}^{-1}, d_{2}^{-1}, \ldots, d_{n}\right.
\end{array}\right) \text { (proved) }
\end{aligned}
$$

Assignment 7

Group 5: Apurv \& Sanjay

Question

11. If A and B are two $n \times n$ non- singular matrix, show that $\operatorname{adj}(A B)=\operatorname{adj}(B) \operatorname{adj}(A)$

Solution

Given: A and B are non singular
$\Rightarrow A^{-1}$ and B^{-1} exists, and is given by

$$
\begin{equation*}
A^{-1}=\frac{\operatorname{adj}(A)}{|A|} \tag{0.0.1}
\end{equation*}
$$

Where $|A|$ is the determinant of A, we note that it is a scalar, so taking it to the left side.

$$
\begin{equation*}
|A| A^{-1}=\operatorname{adj}(A) \tag{0.0.2}
\end{equation*}
$$

Similarly $|B| B^{-1}=\operatorname{adj}(B)$, going a step further,

$$
\begin{aligned}
\operatorname{adj}(A B) & =|A B|(A B)^{-1} \\
& =|A||B| B^{-1} A^{-1} \\
& \ddots|A B|=|A||B| \text { and }(A B)^{-1}=B^{-1} A^{-1} \\
& =|B| B^{-1}|A| A^{-1} \\
& \ddots \text { Determinant is a scalar, order can be interchanged } \\
& =\operatorname{adj}(B) \operatorname{adj}(A)
\end{aligned} \quad \because \text { From Eq.0.0.2 } \quad \text { Q.E.D }
$$

