Poo b-1
Assignment -5
Froe that $\cosh (\alpha+\beta)-\cosh (\alpha-\beta)=2 \sinh \alpha \sinh \beta$
$8_{0}^{n_{0}}$ - NH. \$

$$
\begin{aligned}
& =\frac{\cosh (\alpha+\beta)-\cosh (\alpha-\beta)}{2}-\frac{e^{(\alpha+\beta)}+e^{-(\alpha+\beta)}+e^{-(\alpha-\beta)}}{2} \\
& =\frac{e^{\alpha} e^{\beta}+e^{-\alpha} e^{-\beta}}{2}-\frac{e^{\alpha} e^{-\beta}+e^{-\alpha} e^{+\beta}}{2} \\
& =\frac{e^{\alpha} e^{\beta}+e^{-\alpha} e^{-\beta}-e^{\alpha} e^{-\beta}-e^{-\alpha} e^{+\beta}}{2} \\
& = \\
& =\frac{e^{\alpha}\left(e^{\beta}-e^{-\beta}\right)+e^{-\alpha}\left(e^{-\beta}-e^{\beta}\right)}{2}=2\left(\frac{\left.e^{\beta}-e^{-\beta}\right)\left(e^{\alpha}-e^{-\alpha}\right)}{2}=2\left(\frac{e^{\alpha}-e^{-\alpha}}{2}\right)\right. \\
& = \\
& \text { fence proved }=2 \sinh \beta \sinh \alpha \\
& =\text { RH }
\end{aligned}
$$

Hence proved

Assignment-5
Newton rath \& Vikas CRaind
(2) St

$$
\left(\frac{1+\sinh \theta}{1-\sinh \theta}\right)^{36}=\cosh 6 \theta+\sinh 6 \theta
$$

N6"y L.H.S

$$
\begin{aligned}
& \left(\frac{1+\tanh \theta}{1-\tanh \theta}\right)^{3} \\
& =\left(\frac{1+\frac{\sinh \theta}{\cosh \theta}}{1-\frac{\sinh \theta}{\cosh \theta}}\right)^{3} \\
& =\left(\frac{\cosh \theta+\sinh \theta}{\cosh \theta-\sinh \theta}\right)^{3} \text {. } \\
& =\left(\frac{\frac{e^{\theta}+e^{-\theta}}{2}+e \frac{\theta-e^{-\theta}}{2}}{\frac{e^{\theta}+e^{-\theta}}{2}-e^{\frac{\theta}{2}-\theta}}\right)^{3} \\
& \left.\begin{array}{l}
=\binom{e^{\theta}+e^{-\theta}+e^{\theta}-e^{-\theta}}{e^{\theta}+e^{-\theta}-\theta^{\theta}+e^{-\theta}}^{3} \\
\left(\frac{2 e^{\theta}}{2 e^{-\theta}}\right)^{3}
\end{array} \right\rvert\, \begin{array}{l}
\because \cosh \theta=\frac{e^{\theta}+e^{-\theta}}{2} \\
\& \sinh \theta=\frac{e^{\theta}-e^{-\theta}}{2}
\end{array} \\
& =\left(\frac{2 e^{\theta}}{2 e^{-\theta}}\right)^{3} \\
& =\left(e^{2 \theta}\right)^{3}=e^{6 \theta}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{60} \\
& =\frac{e^{6 \theta}-6 \theta-e^{6 \theta}-e^{-6 \theta}}{t e^{-6}} \\
& =\frac{1}{2}\left(2 e^{6 \theta}\right) \\
& =\frac{1}{2}\left[e^{6 \theta}+e^{-6 \theta}+e^{6 \theta}-e^{-6 \theta}\right] \\
& =\frac{e^{6 \theta}+i^{-6 \theta}}{2}+e^{6 \theta} \frac{-e^{-6 \theta}}{2} \\
& =\cosh 6 \theta+\sinh 6 \theta
\end{aligned}
$$

RHf
houd

Group-4 (Assignment-5)
$Q \rightarrow$ Expriess $\cosh ^{7} \theta$ in terins of hypecbolic cosines of multiples of $\theta$ :
Solution $\rightarrow$ we know $\cosh \theta=\frac{e^{\theta}+e^{-\theta}}{2}$

$$
\begin{aligned}
& \Rightarrow \cosh ^{7} \theta=\frac{1}{2^{7}}\left(e^{\theta}+e^{-\theta}\right)^{7} \\
& =\frac{1}{2^{7}}\left\{e^{7 \theta}+{ }^{7} c_{1} e^{6 \theta} e^{-\theta}+{ }^{7} c_{2} e^{5 \theta} \cdot e^{-2 \theta}\right. \\
& { }^{7} c_{3} e^{4 \theta} e^{-3 \theta}+{ }^{7} c_{4} e^{3 \theta} \cdot e^{-4 \theta}+7 c_{5} e^{2 \theta} \cdot e^{-5 \theta} \\
& \left.+{ }^{7} c_{6} e^{\theta} \cdot e^{-6 \theta}+7 c_{7} e^{-7 \theta}\right\} \\
& =\frac{1}{2}\left(e^{7 \theta}+7 e^{5 \theta}+21 e^{3 \theta}+35 e^{\theta}+35 e^{-\theta}\right. \\
& \left.+21 e^{-3 \theta}+7 e^{-5 \theta}+e^{-7 \theta}\right) \\
& =\frac{1}{2^{7}}\left\{e^{7 \theta}+e^{-7 \theta}\right)+7\left(e^{5 \theta}+e^{-5 \theta}\right)+35\left(e^{\theta}+e^{-\theta}\right) \\
& \left.+21\left(e^{3 \theta}+e^{-3 \theta}\right)\right\} \\
& =\frac{1}{2^{6}}\left\{\left(\frac{e^{7 \theta}+e^{-7 \theta}}{2}\right)+7\left(\frac{e^{5 \theta}+e^{-5 \theta}}{2}\right)+21\left(\frac{e^{3 \theta}+e^{-3 \theta}}{2}\right)\right. \\
& \left.+35\left(\frac{e^{\theta}+e^{-\theta}}{2}\right)\right\} \\
& =\frac{1}{2}(\cosh 7 \theta+7 \cos 15 \theta+21 \cos k \theta+35 \cos \theta) \\
& =\frac{1}{2^{6}}(\cosh 7 \theta+7 \cosh 5 \theta+21 \cosh 3 \theta+35 \cosh \theta)
\end{aligned}
$$

Problem- of $\sin \theta=\tan 3 x$,
Prove that

$$
\tan \theta=\sinh x
$$

Solution. We have

$$
\begin{align*}
\sin \theta & =\tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}  \tag{1}\\
\text { \&. } \cos \theta & =\sqrt{1-\sin ^{2} \theta}=\sqrt{1-\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)^{2}} \\
& =\sqrt{\frac{\left(e^{x}+e^{-x}\right)^{2}-\left(e^{x}+e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}}} \\
& =\sqrt{\left(\frac{4}{\left.e^{x}+e^{-x}\right)^{2}}\right.} \\
\cos \theta & =\frac{2}{\left(e^{x}+e^{-x}\right)}
\end{align*}
$$

Now

$$
\begin{aligned}
& \tan \theta=\frac{\sin \theta}{\cos \theta} \\
& \text { osingeren}(1) s)(1 i) \\
& \tan \theta=\frac{e^{x}-e^{-x}}{2} \\
& \quad \tan \theta=\sinh x \quad\left(\because \sinh x=\frac{e^{x}-e^{-x}}{2}\right)
\end{aligned}
$$

Proved.

भौतिक अनुसंधान प्रयोगशाला, अहमदाबाद Physical Research Laboratory, Ahmedabad
If $\tan x / 2=\tanh (u / 2)$ prove that i) $\tan x=\sinh u$ and

Now, $\quad \cosh ^{2} u-\sinh ^{2} u=1$

$$
\begin{aligned}
& a, \cosh ^{2} u=1+\sinh ^{2} u=1+\tan ^{2} x \quad 1 \\
& \Rightarrow \cosh u=\sec x \quad=\sec ^{2} x \\
& \Rightarrow
\end{aligned}
$$

$$
\text { or, } \cos x \cosh u=1 \quad \text { (proved) }
$$

$$
\begin{aligned}
& \text { L.H.S }=\tan x=\frac{2 \tan x / 2}{1-\tan ^{2} x / 2} \\
& =\frac{2 \tanh (u / 2)}{1-\tanh ^{2} u / 2}=\frac{2 \sinh (u / 2) \cosh (u / 2)}{\cosh ^{2}(\omega / 2)-\sinh ^{2}(u / 2)} \\
& =\frac{2\left(\frac{e^{u / 2}-e^{-4 / 2}}{2}\right)\left(\frac{e^{u / 2}+e^{-u / 2}}{2}\right)}{\left(\frac{e^{u / 2}+e^{-u / 2}}{2}\right)^{2}-\left(\frac{e^{u / 2}-e^{-u / 2}}{2}\right)^{2}} \\
& =\frac{2\left(e^{u}-e^{-u}\right)}{\left(e^{4 / 2}+e^{-u / 2}\right)^{2}-\left(e^{u / 2}-e^{-4 / 2}\right)^{2}},\left[\begin{array}{l}
(a+b)(a-b) \\
=a^{2}-b^{2}
\end{array}\right] \\
& =\frac{2\left(e^{4}-e^{-u}\right)}{\left(e^{4 / 2}+e^{-4 / 2}+e^{4 / 2}-e^{-4 / 2}\right)\left(e^{4 / 2}+e^{-4 / 2}-e^{4 / 2}+e^{-4 / 2}\right)} \\
& \left.=\frac{2\left(e^{u}-e^{-u}\right)}{2 e^{u / 2} \cdot 2 e^{-u / 2}} \theta\left[a^{2}-b^{2}\right)(a+b)(a-b)\right] \\
& =\frac{e^{u}-e^{-u}}{2}=\sinh (u) \text {-r.HITp roved }
\end{aligned}
$$

Q
5.( ii) if $\tan \frac{x}{2}=\tanh \frac{u}{2}$ prove that,

$$
u=\log _{e} \tan \left(\frac{\pi}{4}+\frac{x}{2}\right)
$$

Ans:-

$$
\begin{aligned}
& \tan \frac{x}{2}=\tanh \frac{u}{2} \\
\Rightarrow \frac{u}{2} & =\tanh \left(\tan \frac{x}{2}\right)
\end{aligned}
$$

Set,

$$
\begin{aligned}
& \tanh ^{-1}(a)= \\
& \Rightarrow a=\tanh b=\frac{e^{b}-e^{-b}}{e^{b}+e^{-b}} \\
& e^{b}-e^{-b}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow a=a\left(e^{b}+e^{-b}\right)=e^{b}-e^{-b} \\
& \Rightarrow a\left(2 b=e^{2 b}-1\right.
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow a\left(e^{b}+e^{2 b}-1\right. \\
& \Rightarrow \quad a e^{2 b}+a=e^{2 b}-(a+1)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow a e^{2 b}+a= \\
& \Rightarrow(a-1) e^{2 b}=-(a+1) \\
& 2 b \quad 1+a
\end{aligned}
$$

$$
\Rightarrow e^{2 b}=\frac{1+a}{1-a}
$$

$$
\begin{aligned}
& \Rightarrow 2 b=\ln \left(\frac{1+a}{1-a}\right) \\
& \Rightarrow 2-1
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 2 b=\ln \left(\frac{1-a}{1-a} \ln \left(\frac{1+a}{1-a}\right)\right. \\
& \Rightarrow b=\tanh ^{-1}(a)=\frac{1}{2}
\end{aligned}
$$

This is the formula we need actually
so, using that,

$$
\begin{aligned}
& \tanh \left(\tan \frac{x}{2}\right) \\
= & \frac{1}{2} \ln \left[\frac{1+\tan \frac{x}{2}}{1-\tan \frac{x}{2}}\right] \\
\Rightarrow \quad \frac{u}{2} & =\frac{1}{2} \ln \left[\frac{1+\tan \frac{x}{2}}{1-\tan \frac{x}{2}}\right] \\
\Rightarrow \quad u & =\ln \left[\frac{\tan \frac{x}{2} \tan \frac{\pi}{4}}{1-\tan \frac{x}{2} \tan \frac{\pi}{4}}\right] \\
& =\ln \left[\tan \left(\frac{x}{2}+\frac{\pi}{4}\right)\right]
\end{aligned}
$$

(proved)

$$
\frac{\text { ASSIGNMENT-OS }}{\text { GROUP -OT }}
$$

If $\cosh x=\sec \theta$, prove that

$$
\tanh ^{2}\left(\frac{x}{2}\right)=\tan ^{2}\left(\frac{\theta}{2}\right)
$$

Given that

$$
\begin{aligned}
& \cosh x=\sec \theta \\
\Rightarrow \quad & \cosh ^{2}\left(\frac{x}{2}\right)+\sinh ^{2}\left(\frac{x}{2}\right)=\frac{1}{\cos ^{2}\left(\frac{\theta}{2}\right)-\sin ^{2}\left(\frac{\theta}{2}\right)} \\
\Rightarrow & \frac{1+\tanh ^{2}\left(\frac{x}{2}\right)}{\operatorname{sech}^{2}\left(\frac{x}{2}\right)}=\frac{\sec ^{2}\left(\frac{\theta}{2}\right)}{1-\tan ^{2}\left(\frac{\theta}{2}\right)} \\
\Rightarrow \quad & \frac{1+\tanh ^{2}\left(\frac{x}{2}\right)}{1-\tanh ^{2}\left(\frac{x}{2}\right)}=\frac{1+\tan ^{2}\left(\frac{\theta}{2}\right)}{1-\tan ^{2}\left(\frac{\theta}{2}\right)}
\end{aligned}
$$

Now applying componendo and dividend o

$$
\tanh ^{2}\left(\frac{x}{2}\right)=\tan ^{2}\left(\frac{\theta}{2}\right)
$$

Proved.

Assignment: 5
$\left\{\begin{array}{l}\text { venkatesh chinn: } \\ \text { Durgaprasad }\end{array}\right.$ Durgaprasad

- भौतिक अनुसंधान प्रयोगशाला, अहमदाबाद

Physical Research Laboratory, Ahmedabad
(6(1): If $\cos 4 x=\sec \theta$, prove that $x=\log \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)$
$\cot$

$$
\begin{aligned}
& \text { Given } \cosh x=\sec \theta \\
& \Rightarrow \quad \frac{e^{x}+e^{-x}}{2}=\frac{1}{\cos 2 \frac{\theta}{2}} \\
& {\left[\because \cosh x=\frac{e^{x}+e^{-x}}{2}\right]} \\
& =\frac{1}{\cos ^{2} \theta / 2-\sin ^{2} \theta \theta_{2}} \\
& =\frac{\sec ^{2} \theta / 2}{1-\tan ^{2} \theta / 2} \\
& =\frac{2\left(1+\tan ^{2} \theta_{2}\right)}{1-\tan ^{2} \theta / 2} \\
& =\frac{1}{2}\left[\frac{\left(1-\tan \theta_{2}\right)^{2}+\left(1+\tan \theta_{2}\right)^{2}}{1-\tan ^{2} \theta_{2}}\right] \\
& =\frac{1}{2}\left[\frac{1-\tan \alpha_{2}}{1+\tan \alpha_{2}}+\frac{1+\tan \theta_{2}}{1-\tan \theta_{2}}\right] \\
& \Rightarrow \frac{e^{x}+e^{-x}}{2}=\frac{1}{2}\left[\frac{1+\tan \alpha_{2}}{1-\tan \alpha_{2}}+\left(\frac{1+\tan \theta_{2}}{1-\tan \theta_{2}}\right)^{-1}\right] \\
& \Rightarrow \quad e^{x}+e^{-x}=\frac{1+\tan \alpha_{2}}{1-\tan \alpha_{2}}+\left(\frac{1+\tan \theta / 2}{1-\tan \theta / 2}\right)^{-1}
\end{aligned}
$$

By comporing the terms we get

$$
e^{x}=\frac{1+\tan \theta / 2}{1-\tan \theta / 2}
$$

$$
\begin{aligned}
& \Rightarrow \quad e^{x}=\frac{1+\tan \theta / 2}{1-\tan \theta / 2} \\
& \Rightarrow \quad e^{x}=\frac{\tan \left(\frac{\pi}{4}\right)+\tan \left(\frac{\theta}{2}\right)}{1-\tan \left(\frac{\pi}{4}\right) \tan \left(\frac{\theta}{2}\right)} \\
& \Rightarrow \quad e^{x}=\tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right) \quad\left[\because \operatorname{Tan}(A+B)=\frac{\operatorname{Tan} A+\tan \theta}{1-\tan A \tan B}\right]
\end{aligned}
$$

$\Rightarrow$ Take $\log$ on both side?

$$
\begin{aligned}
& \Rightarrow \quad \log \left(e^{x}\right)=\log \left(\tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)\right) \\
& \Rightarrow \quad x \log e=\log \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right) \\
& \Rightarrow \quad \sqrt{x}=\log \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)
\end{aligned}
$$

Hence, proved!.

Sati: 22.08 .2012
Assignment -5
भौतिक अनुसधान प्रयोगशाला, अहमढ़ाबाद
Physical Research Laboratory, Ahmedabad
8. Prove that $\sinh ^{-1} x=\operatorname{timh}^{-1}\left|\frac{x}{\sqrt{1+x^{2}}}\right|$
$\Rightarrow$ Let $\sinh ^{-1} x=u$ :

$$
\therefore x=\sinh u=\frac{e^{u}-e^{-u}}{2}
$$

or, $e^{u}-\frac{1}{e^{u}}=2 x$
or, $\left(e^{u}\right)^{2}-2 x e^{u}-1=0$... the sol ${ }^{n}$ to this quadratic eq ns:
So,

$$
e^{u}=\frac{2 x \pm \sqrt{(2 x)^{2}-4 \cdot 1 \cdot(-1)}}{2}=x \pm \sqrt{1+x^{2}}
$$

So,

$$
\begin{aligned}
e^{-u} & =\frac{1}{x \pm \sqrt{1+x^{2}}}=\frac{x \mp \sqrt{1+x^{2}}}{\left(x \pm \sqrt{1+x^{2}}\right)\left(x \mp \sqrt{1+x^{2}}\right)} \\
& =\frac{x \mp \sqrt{1+x^{2}}}{x^{2}-\left(\sqrt{1+x^{2}}\right)^{2}}=-x \pm \sqrt{1+x^{2}}
\end{aligned}
$$

So,

$$
\begin{aligned}
\tanh u & =\frac{e^{u}-e^{-u}}{e^{u}+e^{-u}}=\frac{x \pm \sqrt{1+x^{2}}+x+\sqrt{1+x^{2}}}{x \pm \sqrt{1+x^{2}}-x \pm \sqrt{1+x^{2}}} \\
& = \pm \frac{x}{\sqrt{1+x^{2}}}
\end{aligned}
$$

So, $x=\operatorname{lanh}^{-1}\left|\frac{x}{\sqrt{1+x^{2}}}\right|$.

$$
\therefore \text { L.H.S. }=\operatorname{Sinh}^{-1} x=u=\operatorname{lanh}^{-1}\left|\frac{x}{\sqrt{1+x^{2}}}\right|=\text { R.H.S. (proved) }
$$

[Note: The problem given in the problem sheet was:

$$
\text { RUS } \left.=\operatorname{lan} h^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right) \text {. I request you to please see to } \ell_{0}^{-}\right]
$$

## Assignment 5

Group 5: Apurv \& Sanjay

## Question

5. Show that $\operatorname{sech}^{-1} \sin \theta=\log \cot \theta / 2$

## Solution

Digression :

Let

$$
\begin{equation*}
\operatorname{sech}^{-1} x=y \tag{0.0.1}
\end{equation*}
$$

Then

$$
\begin{align*}
x & =\operatorname{sech} y  \tag{0.0.2}\\
x & =\frac{2 e^{y}}{e^{2 y}+1} \tag{0.0.3}
\end{align*}
$$

Rearranging terms

$$
\begin{equation*}
e^{2 y} x-2 e^{y}+x=0 \tag{0.0.4}
\end{equation*}
$$

Solving for $e^{y}$ from the above equation(It is a quadratic equation in $e^{y}$ ).

$$
\begin{equation*}
e^{y}=\frac{1 \pm \sqrt{1+x^{2}}}{x} \tag{0.0.5}
\end{equation*}
$$

We know that $\operatorname{Range}\left(e^{y}\right) \in \mathbb{R}^{+}$, so that gives a restriction on the values $x$ can take, i. e. $0<x \leq 1$, also the $\left(1-\sqrt{1+x^{2}}\right) / x$ solution has to be dropped as it is negative in the
interval. Then

$$
\begin{equation*}
e^{y}=\frac{1+\sqrt{1+x^{2}}}{x} \tag{0.0.6}
\end{equation*}
$$

From Eq.0.0.1 and Eq.0.0.6,

$$
\begin{equation*}
\operatorname{sech}^{-1} x=\log \left[\frac{1}{x}+\frac{\sqrt{1-x^{2}}}{x}\right] \quad \forall x \in(0,1] \tag{0.0.7}
\end{equation*}
$$

In the question we have to show $\operatorname{sech}^{-1} \sin \theta=\log \cot \theta / 2$. From Eq0.0.7

$$
\begin{align*}
\operatorname{sech}^{-1} \sin \theta & =\log \left[\frac{1}{\sin \theta}+\frac{\sqrt{1-\sin ^{2} \theta}}{\sin \theta}\right]  \tag{0.0.8}\\
& =\log \left[\frac{1+\cos \theta}{\sin \theta}\right]  \tag{0.0.9}\\
& =\log \frac{2 \cos ^{2} \frac{\theta}{2}}{2 \cos \frac{\theta}{2} \sin \frac{\theta}{2}}  \tag{0.0.10}\\
& =\log \frac{\cos \theta / 2}{\sin \theta / 2}  \tag{0.0.11}\\
& =\log \cot \frac{\theta}{2} \quad \text { Q.E.D } \tag{0.0.12}
\end{align*}
$$

