EXPERIMENTAL TECHNIQUES & ERROR ANALYSIS

Assignment - 3, Gracup - 4

Question \rightarrow Find all the values of $(-1-i)^{1/5}$ & also find the product of all the values. Solution > Let us assume $z = (-1-i)^{1/3}$ _____(1) Here z has \$50 stinct roots. To evaluate these values we have to exprises z in Ciso form (i.e. coso + ising form). In ordere to do that let us take some assumption & proceed as below. Take $\pi \cos \theta = -1 - 0$ rcshp = -1 - (3) Squaring & adding eq (2) & (3) we will get $rc^{2}\cos^{2}\theta + rc^{2}\sin^{2}\theta = 1 + 1$ $\Rightarrow rc^2 = 2$ => re = V2 .----(4) Dividing eq (3) by eq (2) we will also get $\tan \Theta = 1$ $\Rightarrow \Theta = \tan^{-1}(1) = \frac{\pi}{4}$ (5) Now by using eq (4) & (5) we can be able to express z is ciso form. $z = (rc \cos \theta + i rc \sin \theta)^{1/5}$ (: considering eq (1), (2) & (3) = $\left(\sqrt{2}\cos\frac{\pi}{4} + \sqrt{2}i\sin\frac{\pi}{4}\right)^{1/2}$ = $\left\{ \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \right\}$ $= \left(\sqrt{2} \quad Cis \frac{\pi}{4}\right)^{1/5} = \left(\sqrt{2}\right)^{1/5} \cdot Cis \frac{1}{5} \left(2\pi\pi + \frac{\pi}{4}\right) - (6)$

where:
$$m = 0, 1, 2, 3, 4$$

Now substituting the individual values of n in eff(6)
we can get each root of z .
If $n=0, z_0 = (i_2)^{\frac{1}{5}}$ Cis $\frac{1}{20}$
If $n=1, z_1 = (i_2)^{\frac{1}{5}}$ Cis $\frac{1}{20}$
If $n=1, z_1 = (i_2)^{\frac{1}{5}}$ Cis $\frac{1}{20}$ (is $\frac{1}{20}$)
If $n=2, z_2 = (i_2)^{\frac{1}{5}}$ Cis $\frac{1}{2}(n+\frac{\pi}{4}) = (i_2)^{\frac{1}{5}}$ Cis $\frac{25\pi}{20}$
If $n=3, z_3 = (i_3)^{\frac{1}{5}}$ Cis $\frac{1}{5}(6\pi + \frac{\pi}{4}) = (i_2)^{\frac{1}{5}}$ Cis $\frac{25\pi}{20}$
If $n=4, z_4 = (i_3)^{\frac{1}{5}}$ Cis $\frac{1}{5}(6\pi + \frac{\pi}{4}) = (i_3)^{\frac{1}{5}}$ Cis $\frac{53\pi}{20}$
If $n=4, z_4 = (i_3)^{\frac{1}{5}}$ Cis $\frac{1}{5}(6\pi + \frac{\pi}{4}) = (i_3)^{\frac{1}{5}}$ Cis $\frac{53\pi}{20}$
 \therefore All the values of $(-1-i)^{\frac{1}{5}}$ are given by z_0, z_1, z_2 .
 $z_3 \neq z_4$ respectively.
Now: z_1, z_2, z_3, z_4
 $= (j_3)^{\frac{1}{5}}$ Cis $\frac{\pi}{20}$ Cis $\frac{9\pi}{20}$. Cis $\frac{17\pi}{20}$. Cis $\frac{25\pi}{20}$. (is $\frac{33\pi}{20}$)
 $= \sqrt{2}$ Cis $(\frac{\pi}{20} + \frac{9\pi}{40} + \frac{17\pi}{20} + \frac{25\pi}{30} + \frac{33\pi}{32})$
 $= \sqrt{2}$ Cis $(\frac{\pi}{20} + \frac{9\pi}{40} + \frac{17\pi}{20} + \frac{25\pi}{30} + \frac{33\pi}{32})$
 $= \sqrt{2}$ Cis $(\frac{17\pi}{20})$ [: convolvely of De Moiver's Theorem
 rec Cis ϕ . Cis ϕ . Cis $\phi_3 = Cis(\phi_1 + \phi_2 + \phi_3)$
 $= \sqrt{2}$ Cis $\frac{17\pi}{4}$
 \cdot Preduct of all the roots $d_1 - (1-i)^{\frac{1}{5}}$ is d_2 Cis $\frac{17\pi}{4}$
 $= \sqrt{2}$ (cos $\frac{17\pi}{4} + i \sin \frac{17\pi}{4}$)
 $= \sqrt{2}$ (cos $\frac{17\pi}{4} + i \sin \frac{17\pi}{4}$)
 $= \sqrt{2}$ (cos $\frac{17\pi}{4} + i \sin \frac{17\pi}{4}$)
 $= \sqrt{2}$ (cos $\frac{17\pi}{4} + i \sin \frac{17\pi}{4}$)

ļ

Mathematical the & Numerical Methods

(Assignment - 3) (Complex Numbers)

Giroyp-6

Q. 2 (17) Find all values of

 $(-1+iJ_3)^{3/2}$

ሌ ን

Sol- First we will change the complex number (-1+ is) in to polar form by using

$$= \gamma \cos \theta$$

$$= \gamma \sin \theta$$

$$-1 = \gamma \cos \theta, \quad \sqrt{3} = \gamma \sin \theta$$

$$\frac{1}{\sqrt{3}}$$

$$\frac{1}{\sqrt{3}} = -\sqrt{3} = \theta = -\frac{\pi}{3} = \frac{5\pi}{3}$$

$$\gamma^{2} = 4 = \gamma = 2$$

So we can write

$$(-1+iJ_{3}) = 2\left[\frac{(dg\pi)}{3} + i \sin(g\pi) \right]$$

$$(-1+iJ_{3})^{3/2} = \left[2 C_{1} S\left(\frac{g\pi}{3}\right) \right]^{3/2}$$

$$= \left[2 C_{1} S\left(2n\pi + \frac{g\pi}{3}\right) \right]^{3/2}$$

$$= \left[2 C_{1} S\left(\frac{(6n\pi + g\pi)}{3}\right) \right]^{3/2}$$

$$= \left[2 C_{1} S\left(\frac{(6n\pi + g\pi)}{3}\right) \right]^{3/2}$$

$$= \left(2 \right)^{3/2} C_{1} S\left(\frac{3}{2} \cdot \frac{(6n\pi + g\pi)}{3}\right) \qquad (\because (Gs))^{n} = Gsnd)$$

$$= \left(2 \right)^{3/2} C_{1} S\left(\frac{(6n\pi + g\pi)}{2}\right)$$

The prots of Complex no can be found by sushing n=0,1. respech

25

$$(2)^{3b}$$
 Cis $\frac{5\pi}{2}$, $(2)^{3b}$ Cis $\frac{11\pi}{2}$

18-25=(055F)

Ð

$$J = 2\sqrt{2} \left\{ (v_{5} \frac{S_{T}}{2} + i \sin \frac{S_{T}}{2}), 2\sqrt{2} \right\} \left\{ (v_{5} \frac{S_{T}}{2} + i \sin \frac{N_{T}}{2}) \right\}$$

$$= 2\sqrt{2} \left\{ (0 + i), 2\sqrt{2} \left((0 + i) \right) \right\}$$

Assignment - 3 Gro-1. Vikos chand & Newton North q(iii) Find all the values of -) $(1+i\sqrt{3})^{3/4} + (1-i\sqrt{3})^{3/4}$ $p_{3}^{(n)} = (1 + i n_{3})^{3/4} + (1 - i n_{3})^{3/4}$ Deviding & multipling each term by 2 $= \left\{ 2 \left(\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) \right\}^{3/4} + \left\{ 2 \left(\frac{1}{\sqrt{2}} - i \frac{\sqrt{3}}{2} \right) \right\}^{3/4}$ we get -) $= 2^{3/4} \left[\left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)^{3/4} + \left(\cos \frac{\pi}{3} - i \sin \frac{\pi}{3} \right)^{3/4} \right].$ $= 2^{3/4} \left[\left(\frac{\cos \pi}{3} \right)^{3/4} + \left(\frac{\cos(-\pi)}{3} \right)^{3/4} \right]$ i [l: \$ = (card = i's 2)] $= 2^{3/4} \left[(Gi \le \pi)^{1/4} + (Ci \le (-\pi))^{1/4} \right]$ ring De Movine's Tranen ie (Ciso) = Cisno 1) beer $= 2^{3/4} \int c_{i} S(2n+1) \pi + c_{i} S(2n-1) \pi \int \frac{1}{4}$ where, n=0, 1, 2, 3 vince given prob. her of?

$$\begin{aligned} & \text{for } y = 0, \text{from}(\underline{b}, \text{velance}) \\ &= 2^{3/4} \left[\cos \frac{\pi}{4} + \operatorname{Cis}(\frac{\pi}{6}) \right] \\ &= 2^{3/4} \left[\cos \frac{\pi}{4} + \operatorname{i} \frac{4\pi}{5} + \operatorname{con} \frac{\pi}{6} - \operatorname{i} \frac{1}{7} + \frac{\pi}{6} \right] \\ &= 2^{3/4} \left[\cos \frac{\pi}{2} + \operatorname{i} \frac{6\pi}{5} + \frac{\pi}{6} + \operatorname{con} \frac{\pi}{6} - \operatorname{i} \frac{1}{7} + \frac{\pi}{6} \right] \\ &= 2^{3/4} \left[\cos \frac{3\pi}{5} + \operatorname{con} \frac{\pi}{6} + \operatorname{con} \frac{\pi}{6} + \operatorname{i} \frac{1}{7} + \operatorname{i} \frac{\pi}{7} \right] \\ &= 2^{3/4} \left[\cos \frac{3\pi}{5} + \operatorname{con} \frac{\pi}{6} + \operatorname{con} \frac{\pi}{6} + \operatorname{i} \frac{1}{7} + \operatorname{i} \frac{\pi}{7} \right] \\ &= 2^{3/4} \left[\cos \frac{3\pi}{5} + \operatorname{con} \frac{\pi}{6} + \operatorname{i} + \operatorname{i} \frac{\pi}{7} \right] \\ &= 2^{3/4} \left[\cos \frac{3\pi}{5} + \operatorname{i} \cos \frac{\pi}{6} + \operatorname{i} \frac{1}{7} + \operatorname{i} \frac{\pi}{7} \right] \\ &= 2^{3/4} \left[\cos \frac{5\pi}{5} + \operatorname{con} \frac{\pi}{6} + \operatorname{i} \frac{1}{7} + \operatorname{i} \frac{\pi}{7} \right] \\ &= 2^{3/4} \left[\cos \frac{5\pi}{5} + \operatorname{con} \frac{5\pi}{5} + \operatorname{con} \frac{3\pi}{5} + \operatorname{con} (\pi - \frac{\pi}{5}) \right] \\ &= 2^{3/4} \left[\cos \frac{5\pi}{4} + \operatorname{con} \frac{5\pi}{5} + \cos \frac{3\pi}{5} + \operatorname{con} (\pi - \frac{\pi}{5}) \right] \\ &= 2^{3/4} \left[\cos \frac{5\pi}{4} + \operatorname{con} \frac{\pi}{5} + \operatorname{con} \frac{\pi}{5} + \operatorname{con} (\pi - \frac{\pi}{5}) \right] \\ &= 2^{3/4} \left[-\cos \frac{\pi}{5} + \operatorname{in} \frac{\pi}{5} - \cos \frac{\pi}{5} + \operatorname{i} \frac{\pi}{5} \right] \\ &= 2^{3/4} \left[-\cos \frac{\pi}{5} + \operatorname{in} \frac{\pi}{5} - \cos \frac{\pi}{5} + \operatorname{i} \frac{\pi}{5} \right] \\ &= 2^{3/4} \left[-\cos \frac{\pi}{5} + \operatorname{in} \frac{\pi}{5} - \cos \frac{\pi}{5} + \operatorname{i} \frac{\pi}{5} \right] \\ &= 2^{3/4} \left[\cos (\pi - \frac{\pi}{5}) + \operatorname{in} (4\pi - \frac{\pi}{5}) + \operatorname{con} (\pi - \frac{\pi}{5}) \right] \\ &= 2^{3/4} \left[\cos (\pi - \frac{\pi}{5}) + \operatorname{i} \cos (\pi - \frac{\pi}{5}) + \operatorname{con} (\pi - \frac{\pi}{5}) \right] \\ &= 2^{3/4} \left[\cos (\pi - \frac{\pi}{5}) + \operatorname{i} \sin (\pi - \frac{\pi}{5}) + \operatorname{con} (\pi - \frac{\pi}{5}) \right] \\ &= 2^{3/4} \left[\cos (\pi - \frac{\pi}{5}) + \operatorname{i} \sin (4\pi - \frac{\pi}{5}) + \operatorname{con} (\pi - \frac{\pi}{5}) \right] \\ &= 2^{3/4} \left[\cos (\pi - \frac{\pi}{5}) + \operatorname{i} \sin (4\pi - \frac{\pi}{5}) + \operatorname{con} (\pi - \frac{\pi}{5}) \right] \\ &= 2^{3/4} \left[\cos (\pi - \frac{\pi}{5}) + \operatorname{i} \sin (4\pi - \frac{\pi}{5}) + \operatorname{con} (\pi - \frac{\pi}{5}) \right] \\ &= 2^{3/4} \left[\cos (\pi - \frac{\pi}{5}) + \operatorname{i} \sin (4\pi - \frac{\pi}{5}) \right] \\ &= 2^{3/4} \left[\cos (\pi - \frac{\pi}{5}) + \operatorname{i} \sin (4\pi - \frac{\pi}{5}) \right] \\ &= 2^{3/4} \left[\cos (\pi - \frac{\pi}{5}) + \operatorname{i} \sin (2\pi - \frac{\pi}{5}) \right] \\ &= 2^{3/4} \left[\cos (\pi - \frac{\pi}{5}) + \operatorname{i} \sin (2\pi - \frac{\pi}{5}) \right] \\ &= 2^{3/4} \left[\cos (\pi - \frac{\pi}{5}) + \operatorname{i} \sin (2\pi - \frac{\pi}{5}) \right] \\ &= 2^{3/4} \left[\cos (\pi - \frac{\pi}{5}) + \operatorname{i} \sin (2\pi - \frac{\pi}{5}) \right] \\ &= 2^{3/4} \left[\cos (\pi - \frac{\pi}{5}) + \operatorname$$

 $\frac{ASSIGNMENT-03}{G-07}$ To find the voots of $x^{7} + x^{4} + x^{3} + 1 = 0$ $x^{4}(x^{3} + 1) + 1(x^{3} + 1) = 0$ $(x^{3} + 1)(x^{4} + 1) = 0$ $x^{3} = -1, \quad x^{4} = -1$ $x^{3} = -1, \quad x^{4} = -1$ $x^{3} = -1, \quad x^{4} = -1$

Roots are $\operatorname{Cis}(\underline{\Pi}), \operatorname{Cis}(\underline{3}\underline{\Pi}), \operatorname{Cis}(\underline{5}\underline{\Pi})$ $Cis(\underline{T}), Cis(\underline{3}), Cis(\underline{3}), Cis(\underline{5}), Cis(\underline{7}), Cis(\underline{7})$

Assignment-3 11 venkatesh chinni G-11 (2) Durga prozad अोतिक अनुसंधान प्रयोगशाला, अहमदाबाद Physical Research Laboratory, Ahmedabad solve 28-25+23-1=0 28-25+23-120 $\Rightarrow a^{S}(a^{3}-1) + a^{3}-1 = 0$ $(a^{3}-1)(a^{5}+1)=0.$ =1 25+120 a-1=0 and -1 えら=1-1) $\rightarrow a^3 = 1$ x = (-1) 15 =) 7:11/3 2=(cien)15 = cie(2011+17) 7 = (cisco) 13 a= (cis (2019+0))"3 = [cle (2n+1)[] b a = cis (20+1) [1 7 = cis (2011) put n= 0, 1, 2, 3, 4 put m=0,1,2 オニ いらの、 いき 得り、 いき (4月) x = cis(=) cis(=) cis(=) us (27) us (27) ·· a= 1, cis [], cis[]) cis[]) cis[] $cis(\pi)$, $cis(\frac{p_{\pi}}{5})$, $cis(\frac{p_{\pi}}{5})$ These are the roots a required

(0)

EOI

भौतिक अनुसंधान प्रयोगशाला, अहमदाबाद Physical Research Laboratory, Ahmedabad Assignment - 3 (Bivin Geo George and Ritwink) Group 10 Q. 6 Solve $(x-1)^5 + (x)^5 = 0$. $(x-1)^{5} + x^{5} = 0$ $\Rightarrow \left(1 - \frac{1}{x}\right)^{5} + 1 = 0 \quad \left(\text{dividing } x^{5}\right)$ Ans $\Rightarrow \left(\frac{1}{\chi} - 1\right)^5 = 1 = e^{2\pi i \pi}$ $\frac{1}{\chi} - 1 = e^{2\pi i m/s}$ For n=0, $\frac{1}{\chi}-1=1 \Rightarrow \chi=\frac{1}{2}$ For n = 1, $\frac{1}{\chi} - 1 = e^{2\pi i/5} \Rightarrow \chi = \frac{1}{1 + e^{2\pi i/5}}$ For n=2, $\frac{1}{\chi}-1 = e^{4\pi i/s} \Rightarrow \chi = \frac{1}{1+e^{4\pi i/s}}$ For n=3, $\frac{1}{2}-1=e^{6\pi i/5} \Rightarrow \chi = \frac{1}{1+e^{6\pi i/5}}$ For n=4, $\frac{1}{2} - 1 = e^{8\pi i/s} \Rightarrow \chi = \frac{1}{1 + e^{8\pi i/s}}$ so, There are five noots and that's it.

Assignment 3

Date: 11 Ur Ang/1: Group-9

Problem 7: Find the roots of common to the equations $x^{4}+1=0$ and $x^{6}-2=0$. Equation (1) \Rightarrow x4+1=0 (where n=0,1,2,....) or, $\pi^{4} = -1$ or, $\alpha^4 = \operatorname{Cis}((2n+1)\pi)$ or, $\alpha = \left\{ \operatorname{Cis}\left((2n+1)\pi\right) \right\}^{\frac{1}{4}}$ { from De 'Moinre's theorem? = $Cis((2n+1)\overline{4})$ CIS D4, CIS 3D4, CIS 5D4, CIS 704 So, the noots of the equation (1). x"+1=0 porce. Cis D4, Cis 304, Cis 504, Cis 764 Equation (2) x6-2=0 $\alpha, \alpha^6 = 2$ [where n = 0, 2, 4, ...] $r_{1,\chi^{6}} = Cis [(2n+1) \mathfrak{D}_{2}]$ $\therefore x = \{Cis[(2n+1))\mathcal{P}_2\}^{1/6}.$ S from De' Moivae's theorem? $= Cis[(2n+1)\frac{\pi}{12}]$ = Cis D12, Cis 5012, Cis 9012, Cis 13012, Cis 17712, Cis 21 212. = Cis 312, Cis 5012, Cis 304, Cis 13012, Cis 17012, Cis 704 So, the to roots of the eg? 2 total x6-2-0 are:

Cis P12, Cis 5012, Cis 304, Cis 13012, Cis 17012, Cis +04

So, the common roots of the two equations are: $Cis_{3}\mathcal{D}_{4}$ and $Cis_{7}\mathcal{D}_{4}$ $= \frac{1}{2}(-1+2)$ and $\frac{1}{2}(1-2)$ Aus

•

CHIANDANA JINIA

PROBLEM 8:

Some
$$\chi^2 - 1 = 0$$
, and find which of its roots
satisfy the equation: $\chi^4 + \chi^2 + 1 = 0$

Solutin :

$$\chi^{12} = 1 = 0$$

$$\chi^{12} = 1$$

$$\chi = (1)^{1/2}$$

$$\chi = (1 + 2\pi\pi)^{1/2}$$

$$\chi = (1 + 2\pi)^{1/2}$$

$$\chi = (1 + 2\pi)^$$

$$Rool = 1, \frac{\sqrt{3}}{2} + i\frac{1}{2}, \frac{1}{2} + i\frac{\sqrt{3}}{2}, 0 + i, \frac{-1}{2} + i\frac{\sqrt{3}}{2}, -\frac{\sqrt{3}}{2} + \frac{i1}{2}, \frac{-\sqrt{3}}{2} + \frac{i1}{2}$$

Roots for the quadratic equality:

$$\chi^{4} + \chi^{2} + 1 = 0$$

let $\chi^{2} = \alpha$
 $\alpha^{2} + \alpha + 1 = 0$
 $\alpha = -\frac{1 \pm \sqrt{3}i}{2}$
 $\chi_{1} = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{1/2}$
 $\chi_{2} = \left(-\frac{1}{2} - \frac{\sqrt{3}i}{2}i\right)^{1/2}$

We know that x+iy = 1000 + is smo

$$\chi + i\gamma = \cos 120^\circ + i \sin 120^\circ$$
for not $\chi_1 = (\cos 120^\circ + i \sin 120^\circ)^{1/2}$

$$= \cos 60 + i \sin 60$$

$$= \frac{1}{2} + i \sqrt{3}$$

for lover
$$\chi_2 = 0$$
 cossist $\chi = \sqrt{(\frac{1}{2})^2 + (\frac{1}{2})^2}$
 $\chi = 1$
 $fom 0 = \frac{-\sqrt{3}/2}{-1/2} = \sqrt{3}$
 $0 = 60^{\circ}$
 $\chi + iy = (cos 60^{\circ} + i sm 60)^{1/2}$
 $= cos 30^{\circ} + i sm 30^{\circ}$

$$= \frac{\sqrt{3}}{2} + \frac{1}{2}$$

Hence, then are only 2 looks cop the graduatic eqn network satisfies 22-1=0

Assignment 3

Group 5: Apurv & Sanjay

Question

9. Prove that the n^{th} root of unity form a GP. Also show that the sum of these n roots is zero and their product is -1^{n-1}

Solution

Let

$$z^n = 1 = e^{i(0+2\pi m)}, \qquad m \in \mathbb{Z}$$

Taking n^{th} root on both sides,

$$z = e^{\frac{i2\pi m}{n}}, \qquad m = 0, 1, \dots, (n-1).$$

So the n roots are

$$z_0 = \left(e^{\frac{i2\pi m}{n}}\right)^0$$
$$z_1 = \left(e^{\frac{i2\pi}{n}}\right)^1$$
$$\vdots$$
$$z_{n-1} = \left(e^{\frac{i2\pi}{n}}\right)^{n-1}$$

This may easily be identified as a GP with common ratio $e^{\frac{i2\pi}{n}}$. Now sum of the *n* roots are given by

$$\sum_{k=0}^{n-1} z_k = 1 + \left(e^{\frac{i2\pi}{n}}\right)^1 + \left(e^{\frac{i2\pi}{n}}\right)^2 + \dots + \left(e^{\frac{i2\pi}{n}}\right)^{n-1}$$
$$= \frac{1 - \left(e^{\frac{i2\pi}{n}}\right)^{n-1+1}}{1 - e^{\frac{i2\pi}{n}}}$$
$$= \frac{1 - e^{i2\pi}}{1 - e^{\frac{i2\pi}{n}}} = 0 \qquad Q.E.D$$

The product of the n roots is given by

$$\prod_{k=0}^{n-1} z_k = e^0 \times e^{\frac{i2\pi}{n}} \times \left(e^{\frac{i2\pi}{n}}\right)^2 \times \dots \times \left(e^{\frac{i2\pi}{n}}\right)^{n-1}$$

= $exp\left(0 + \frac{i2\pi}{n} + \frac{i2\pi}{n}2 + \dots + \frac{i2\pi}{n}(n-1)\right)$
= $exp\left(\frac{i2\pi}{n}[0 + 1 + 2 + \dots + (n-1)]\right)$ (0.0.1)

We observe that what we have in the argument is an A.P. So from the equation of the sum of n terms of an A.P the argument get reduced as

$$\sum_{k=0}^{m-1} z_k = exp\left(\frac{i2\pi}{n}(n-1)\frac{n}{2}\right) = exp\left(i\pi(n-1)\right) = exp(i\pi)^{n-1}$$
$$= -1^{n-1} \quad Q.E.D$$