EXPERIMENTAL TECHNIQUES \& ERROR ANALYSIS.
Assignment -3, Group - 4

Question $\rightarrow$ Find all the values of $(-1-i)^{1 / 5}$ \& also find the product of all the values.
solution $\rightarrow$
Let us assume $z=(-i-i)^{1 / 5}$
Here e $z$ has 5 distinct roots. To evaluate these values we have to expriess $z$ in $\operatorname{cis} \theta$ form (ice. $\cos \theta+$ i $\sin \theta$ form). In order to do that let us take some assumption \& proceed as below.

Take $r \cos \theta=-1$

$$
\begin{equation*}
r \sin \theta=-1 \tag{Q}
\end{equation*}
$$

Squaring \& adding eq (2) \& (3) we will get

$$
\begin{align*}
& r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=1+1 \\
\Rightarrow & r^{2}=2 \\
\Rightarrow & r=\sqrt{2} \quad(4) \tag{4}
\end{align*}
$$

Dividing eq (3) by eq (2) we will also get

$$
\begin{align*}
& \tan \theta=1 \\
\Rightarrow & \theta=\tan ^{-1}(1)=\frac{\pi}{4} \tag{5}
\end{align*}
$$

Now by using eq (4) \& (5) we can be able to express $z$ is $\operatorname{cis} \theta$ form.

$$
\begin{align*}
z & =(r \cos \theta+i r \sin \theta)^{1 / 5} \quad\left(\begin{array}{c}
\text { Considering } \operatorname{ej} i^{n}(1) \\
\\
\end{array}=\left(\sqrt{2} \cos \frac{\pi}{4}+\sqrt{2} i \sin \frac{\pi}{4}\right)^{1 / 5}(3)\right. \\
& =\left\{\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right\}^{1 / 5} \\
& =\left(\sqrt{2} \operatorname{cis} \frac{\pi}{4}\right)^{1 / 5}=(\sqrt{2})^{1 / 5} \cdot \operatorname{cis} \frac{1}{5}\left(2 n \pi+\frac{\pi}{4}\right)
\end{align*}
$$

where: $n=0,1,2,3,4$
Now substituting the individual values of $n$ in $e^{n}(6)$ we can get each root of $z$.
If $n=0, z_{0}=(\sqrt{2})^{\frac{1}{5}} \operatorname{cis} \frac{\pi}{20}$
If $n=1, z_{1}=(\sqrt{2})^{\frac{1}{5}} \operatorname{cis} \frac{1}{5}\left(2 \pi+\frac{\pi}{4}\right)=(\sqrt{2})^{\frac{1}{5}} \operatorname{cis} \frac{9 \pi}{20}$
If $n=2, \quad z_{2}=(\sqrt{2})^{\frac{1}{5}} \operatorname{cis} \frac{1}{5}\left(4 \pi+\frac{\pi}{4}\right)=(\sqrt{2})^{\frac{1}{5}} \operatorname{cis} \frac{17 \pi}{20}$
If $n=3, z_{3}=(\sqrt{2})^{\frac{1}{5}}$ cis $\frac{1}{5}\left(6 \pi+\frac{\pi}{4}\right)=(\sqrt{2})^{\frac{1}{5}}$ cis $\frac{25 \pi}{20}$
If $n=4, \quad z_{4}=(\sqrt{2})^{\frac{1}{5}}$ cis $\frac{1}{5}\left(8 \pi+\frac{\pi}{4}\right)=(\sqrt{2})^{\frac{1}{5}}$ cis $\frac{33 \pi}{20}$
$\therefore$ All the values of $(-1-i)^{1 / 5}$ are given by $z_{0}, z_{1}, z_{2}$, $z_{3} \& z_{4}$ respectively.

Now: $z_{1} \cdot z_{2} \cdot z_{3} \cdot z_{4}$
$=(\sqrt{2})^{\frac{1}{5} \times 5} \cdot \operatorname{cis} \frac{\pi}{20} \cdot \operatorname{cis} \frac{9 \pi}{20} \cdot \operatorname{cis} \frac{17 \pi}{20} \cdot \operatorname{cis} \frac{25 \pi}{20} \cdot \operatorname{cis} \frac{33 \pi}{20}$

$$
=\sqrt{2} \operatorname{cis}\left(\frac{\pi}{20}+\frac{9 \pi}{20}+\frac{17 \pi}{20}+\frac{25 \pi}{20}+\frac{33 \pi}{20}\right)
$$

$=\sqrt{2} \operatorname{cis}\left(\frac{175 \pi}{\frac{20}{4}}\right) \quad\left[\begin{array}{l}\because \text { corrolary of De Moiveris Theorem } \\ \text { Tie. } \operatorname{cis} \theta_{1} \cdot \operatorname{cis} \theta_{2} \cdot \operatorname{cis} \theta_{3}=\operatorname{cis}\left(\theta_{1}+\theta_{2}+\theta_{3}\right)\end{array}\right.$
$=\sqrt{2} \operatorname{cis} \frac{17 \pi}{4}$
$\therefore$ Prochnct of all the roots of $(-1-i)^{\frac{1}{5}}$ is $\sqrt{2}$ cis $\frac{17 \pi}{4}$

$$
\begin{aligned}
& =\sqrt{2}\left(\cos \frac{17 \pi}{4}+i \sin \frac{17 \pi}{4}\right) \\
& =\sqrt{2}\left\{\cos \left(4 \pi+\frac{\pi}{4}\right)+i \sin \left(4 \pi+\frac{\pi}{4}\right)\right\} \\
& =\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) \\
& =\sqrt{2}\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=1+i
\end{aligned}
$$

Mathematical \& Numerical Methods Group-6
(Assignment - 3) (Complex Numbers)
Q. $2(\pi)$ Find all values of

$$
(-1+i \sqrt{3})^{3 / 2}
$$

Sol"- First we will change the compux number $(-1+i \sqrt{3})$ in to polar form by using

$$
\begin{aligned}
x & =r \cos \theta \\
y & =r \sin \theta \\
& -1=r \cos \theta, \quad \sqrt{3}=r \sin \theta
\end{aligned}
$$

So we can white

$$
\begin{aligned}
& \tan \theta=-\sqrt{3} \Rightarrow \theta=-\pi / 3=\frac{5 \pi}{3} \\
& \gamma^{2}=4 \Rightarrow \gamma=2
\end{aligned}
$$

$$
\begin{aligned}
(-1+i \sqrt{3}) & =2[\cos (4 \pi / 3)+i \sin (5 \pi / 3)] \\
(-1+i \sqrt{3})^{3 / 2} & =\left[2 \operatorname{cis}\left(\frac{5 \pi}{3}\right)\right]^{3 / 2} \\
& =\left[2 \operatorname{cis}\left(2 n \pi+\frac{5 \pi}{3}\right)\right]^{3 / 2} \\
& =\left[2 \cos \left(\frac{(6 n \pi+5 \pi)}{3}\right)\right]^{3 / 2} \\
& =(2)^{3 / 2} \operatorname{cis}\left[\frac{3}{2} \cdot \frac{(6 n \pi+5 \pi)}{3}\right] \quad\left(\because(\operatorname{cis} \theta)^{n}=\cos n \theta\right) \\
& =(2)^{3 / 2} \cos \frac{(6 n \pi+5 \pi)}{2}
\end{aligned}
$$

The roots of compux no can be found by sustatity $n=0,1$. respect

$$
(2)^{3 / 2} \operatorname{cis} \frac{5 \pi}{2},(2)^{3 / 2} \operatorname{cis} \frac{11 \pi}{2}
$$

$$
\begin{aligned}
& \Rightarrow \quad 2 \sqrt{2}\left\{\cos \frac{5 \pi}{2}+i \sin \frac{5 \pi}{2}\right\}, 2 \sqrt{2}\left\{\cos \frac{11 \pi}{2}+i \sin \frac{11 \pi}{2}\right\} \\
& \Rightarrow \quad 2 \sqrt{2}(0+i), 2 \sqrt{2}(0+i(-1))
\end{aligned}
$$

Assignmect - 3
$G_{r}-1$.
Vikove chand \& Newtoindolt
2(iii) Find all the values of $\longrightarrow$

$$
\begin{aligned}
& (1+i \sqrt{3})^{3 / 4}+(1-i \sqrt{3})^{3 / 4} \\
& s^{3} /=(1+i \sqrt{3})^{3 / 4}+(1-i \sqrt{3})^{3 / 4}
\end{aligned}
$$

Deviding \& multipling each tenm by 2 we get $\longrightarrow$

$$
\begin{aligned}
& \text { get } \longrightarrow\left\{2\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)\right\}^{3 / 4}+\left\{2\left(1 / 2-i \frac{\sqrt{3}}{2}\right)\right\}^{3 / 4} \\
& =\left\{\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{3 / 4}+\left(\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right)^{3 / 4}\right] . \\
& \left.=2^{3 / 4}\left[\operatorname{cis} \frac{\pi}{3}\right)^{3 / 4}+\left(\operatorname{cis}\left(-\frac{\pi}{3}\right)\right)^{3 / 4}\right] \\
& =2^{3 / 4}[(\operatorname{li}( \pm \theta)=(\cos \theta \pm i \sin \theta)
\end{aligned}
$$

$$
=2^{3 / 4}\left[(\operatorname{cis} \pi)^{1 / 4}+(\operatorname{cis}(-1))^{1 / 4}\right]
$$

using De Movirés Thamem.

$$
\therefore \lambda(\operatorname{cis} \theta)^{n}=\operatorname{cis} n \theta
$$

(1) beconnes

$$
=2^{3 / 4}\left[\operatorname{cis}\left(\frac{2 n+1) \pi}{4}+\operatorname{cis}\left(\frac{2 n-1}{4}\right) \pi\right]\right.
$$

whine, $n=0,1,2,3$
since gireim prob. Kas 'y' twob.

For, $n=0$, Fromn (2) wrherel.

$$
\begin{aligned}
& =2^{3 / 4}\left[\operatorname{cis} \frac{\pi}{4}+\operatorname{cis}\left(-\frac{\pi}{4}\right)\right] \\
& =2^{3 / 4}\left[\cos \frac{\pi}{4}+i \operatorname{sis} \frac{\pi}{4}+\cos \frac{\pi}{4}-i \cos \frac{\pi}{4}\right] \\
& =2^{3 / 4} \cdot 2 \cos \frac{\pi}{4}=2^{3 / 4} \cdot 2 \cdot \frac{1}{\sqrt{2}}=2^{5 / 2}
\end{aligned}
$$

$$
n=1,=2^{3 / 4}\left[\operatorname{cis} \frac{3 \pi}{4}+\operatorname{cis} \frac{\pi}{4}\right]
$$

$$
=2^{3 / 4}\left[\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}+\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right]
$$

$$
=2^{3 / 4}\left[\cos \left(\frac{\pi}{2}+\frac{\pi}{4}\right) \text { eisi }\left(\frac{\pi}{2}+\frac{\pi}{4}\right)+\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right]
$$

$$
=2^{3 / 4}\left[-\sin \frac{\pi}{4}+i \cos \frac{\pi}{4}+\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right]
$$

$$
=2^{3 / 4}\left[-\frac{1}{1 / 2}+i \frac{1}{\sqrt{2}}+\frac{1}{1 /}+i \frac{1}{\sqrt{2}}\right]
$$

$$
=i 2^{3 / 4} \cdot 2 \frac{1}{\sqrt{2}}=i 2^{5 / 2}
$$

$$
\begin{aligned}
& =i 2^{3 / 4} \cdot 2 \frac{1}{\sqrt{2}}=i 2^{3} \\
n=2 & =2^{3 / 4}\left[\cos \frac{5 \pi}{4}+\cos \left(\frac{3 \pi}{4}\right)\right]
\end{aligned}
$$

$$
=2^{3 / 4}\left[\cos \frac{5 \pi}{4} \operatorname{tisin} 5 \frac{\pi}{4}+\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right]
$$

$$
=2^{3 / 4}\left[\cos \left(\pi+\frac{\pi}{4}\right)+i \sin \left(\pi+\frac{\pi}{4}\right)+\cos \left(\pi-\frac{\pi}{4}\right)\right.
$$

$$
\left.+i 5\left(\pi-\frac{\pi}{4}\right)\right]
$$

$$
=2^{3 / 4}\left[-\cos \frac{\pi}{4} x i \sin \frac{\pi}{4}-\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right] .
$$

$$
=-2^{34} \cdot 2 \cdot \frac{1}{\sqrt{2}} \quad C \therefore \cos \frac{\pi}{4}=\frac{1}{v_{2}}
$$

$$
=-2^{5 / L}
$$

$$
n=3,=2^{3 / 4}\left[\cos \frac{7 \pi}{4}+\operatorname{cis} \frac{5 \pi}{4}\right]
$$

$$
\begin{aligned}
& =2^{3 / 4}\left[\cos \frac{7 \pi}{4}+\operatorname{cis} \frac{5 \pi}{4}\right] \\
& =2^{3 / 4}\left[\cos \left(2 \pi-\frac{\pi}{4}\right)+i \sin \left(2 \pi-\frac{\pi}{4}\right)+\cos \left(\pi+\frac{\pi}{4}\right)+i \sin \left(\pi+\frac{5}{4}\right.\right.
\end{aligned}
$$

$$
=2^{3 / 4}[\cos \pi / 4-i \sin \pi / 4-\operatorname{cog} \pi / 4-i \sin \pi / 4]
$$

$$
=-i 2^{3 / 4} 2 \cdot \frac{1}{\sqrt{2}}=-i 2^{5 / 2}
$$

Shan:- Thes values ane $\mathbb{I}^{5 / 2} \& \pm i 2^{5 / 2}$
-1 भौतिक अनुसंधान प्रयोगशाला, अहमदाबाद
Physical Research Laboratory, Anmedabad Group -8 assignment -3
Find out all values of $(-1)^{1 / 6}$.
Now,

$$
-1=e^{i \pi}=e^{i(2 n+1) \pi}
$$

So, $\quad(-1)^{\frac{1}{6}}=e^{i(2 n+1) \pi / 6}$ where $n=0,1, \ldots, 5$

$$
=e^{i \pi / 6}, e^{i(3 \pi) / 6}, e^{i 5 \pi / 6}, e^{i 7 \pi / 6},
$$

$\frac{\text { ASSIGNMENT -03 }}{\text { G-07 }}$
To find the roots of

$$
\begin{aligned}
& x^{7}+x^{4}+x^{3}+1=0 \\
& x^{4}\left(x^{3}+1\right)+1\left(x^{3}+1\right)=0 \\
& \left(x^{3}+1\right)\left(x^{4}+1\right)=0 \\
& x^{3}=-1, x^{4}=-1 \\
& x^{3}=\operatorname{cis}(\pi), x^{4}=\operatorname{cis}(\pi)
\end{aligned}
$$

Roots are

$$
\begin{aligned}
& \operatorname{cis}\left(\frac{\pi}{3}\right), \operatorname{cis}\left(\frac{3 \pi}{3}\right), \operatorname{cis}\left(\frac{5 \pi}{3}\right) \\
& \operatorname{cis}\left(\frac{\pi}{4}\right), \operatorname{cis}\left(\frac{3 \pi}{4}\right), \operatorname{cis}\left(\frac{5 \pi}{4}\right), \operatorname{cis}\left(\frac{7 \pi}{4}\right)
\end{aligned}
$$

Assignment - 3
(i) Venkatech chinni (2) Durga proser
-1 भौतिक अनुसंधान प्रयोगशाला, अहमदाबाद
Physical Research Laboratory, Ahmedabad
(Q) Solve $x^{8}-x^{5}+x^{3}-1=0$
sod

$$
\begin{aligned}
& x^{8}-x^{5}+x^{3}-1=0 \\
\Rightarrow & x^{5}\left(x^{3}-1\right)+x^{3}-1=0 \\
\Rightarrow & \left(x^{3}-1\right)\left(x^{5}+1\right)=0 .
\end{aligned}
$$

$$
\Rightarrow \quad x^{3}-1=0 \quad \text { and } x^{5}+1=0
$$

$$
\Rightarrow \quad x^{3}=1
$$

$$
x^{5}=(-1)
$$

$$
\Rightarrow \quad x=111^{1 / 3}
$$

$$
x=(-1)^{1 / 5}
$$

$$
x=[\operatorname{cis}(0)]^{1 / 3}
$$

$$
x=(\operatorname{cis} \pi)^{1 / 5}
$$

$$
x=[\text { cis }(2 n \pi+0)]^{1 / 3}
$$

$$
x=\operatorname{cis}\left(\frac{2 n \pi}{3}\right)
$$

put $n=0,1,2$
pat $n=0,1,2,3,4$

$$
x=\operatorname{cis} 0, \operatorname{cis}\left(\frac{2 \pi}{3}\right) \text {, cis }\left(\frac{4 \pi}{3}\right)
$$

$$
\begin{array}{r}
x=\operatorname{cis}\left(\frac{\pi}{5}\right), \operatorname{cis}\left(\frac{3 \pi}{5}\right) \operatorname{cis}\left(\frac{5 \pi}{5}\right) \\
\operatorname{cis}\left(\frac{7 \pi}{5}\right), \operatorname{cis}\left(\frac{9 \pi}{5}\right)
\end{array}
$$

$$
\because x=1 \text {, cis }\left(\frac{2 \pi}{3}, \text { cis }\left(\frac{4 \pi}{3}\right) \text {, is }\left(\frac{\pi}{5}\right) \text {, cis }\left(\frac{3 \pi}{5}\right)\right.
$$

$\operatorname{cis}(\pi), \operatorname{cis}\left(\frac{7 \pi}{5}\right)$, is $\left(\frac{7 \pi}{5}\right)$
These are the roots required Assignment - 3
(Bivin Geo George and Rit wo ) Gmoplo
Q. 6

Solve $(x-1)^{5}+(x)^{5}=0$.
Ans

$$
\begin{aligned}
& (x-1)^{5}+x^{5}=0 \\
\Rightarrow & \left(1-\frac{1}{x}\right)^{5}+1=0 \quad \text { (dividing ley } x^{5} \text { ) } \\
\Rightarrow & \left(\frac{1}{x}-1\right)^{5}=1=e^{2 \pi i n} \\
\Rightarrow & \frac{1}{x}-1=e^{2 \pi i n / 5} \\
& \quad 1 \Rightarrow x=1 / 2
\end{aligned}
$$

For $n=0, \quad \frac{1}{x}-1=1 \Rightarrow x=1 / 2$
For $n=1, \frac{1}{x}-1=e^{2 \pi i / 5} \Rightarrow x=\frac{1}{1+e^{2 \pi i / 5}}$
For $n=2, \quad \frac{1}{x}-1=e^{4 \pi i / 5} \Rightarrow x=\frac{1}{1+e^{4 \pi i / 5}}$
For $n=3, \quad \frac{1}{x}-1=e^{6 \pi i / 5} \Rightarrow x=\frac{1}{1+e^{6 \pi / 5}}$
For $n=4, \quad \frac{1}{x}-1=e^{8 \pi i / 5} \Rightarrow x=\frac{1}{1+e^{8 n i / 5}}$
so, There ane five roots and that's it.

Assignment 3
Date: 11 krAng , 1 K
Problem 7:
find the roots common to the equations $x^{4}+1=0$ and $x^{6}-i=0$.
$\Rightarrow$ Equation (1)

$$
\begin{array}{rlrl}
x^{4}+1 & =0 \\
\text { or, } x^{4} & =-1 \\
\text { or, } x^{4} & =\operatorname{cis}((2 n+1) \pi) & & \text { (where } n=0,1,2, \ldots) \\
\text { or, } x & =\{\operatorname{cis}((2 n+1) \pi)\}^{1 / 4} & & \\
& =\operatorname{cis}((2 n+1) \pi \\
& =\operatorname{cis} \pi_{4}, \operatorname{cis} 3 \pi \pi_{4}, \operatorname{cis} 5 \pi / 4, \operatorname{cis} 7 \pi / 4
\end{array}
$$

So, the roots of the equation (1) $x^{4}+1=0$ are:

$$
\begin{gathered}
\left.\quad \operatorname{cis})_{4}, \operatorname{cis}(3)_{4}, \operatorname{cis} 5\right)_{4}, \operatorname{cis} 7 \pi / 4 \\
\Rightarrow 1 / \sqrt{2}(1+i), 1 / \sqrt{2}(-1+i),-1 / \sqrt{2}(1+i), 1 / \sqrt{2}(1-i)
\end{gathered}
$$

Equation (2)

$$
\begin{aligned}
& x^{6}-i=0 \\
& \text { or, } x^{6}=i
\end{aligned}
$$

$$
\begin{aligned}
& \text { or, } x^{6}=2 \\
& \text { r., } \left.x^{6}=\operatorname{cis}\left[(2 n+1)^{0}\right)_{2}\right] \quad[\text { where } x=0,2,4, \ldots]
\end{aligned}
$$

$$
\therefore x=\left\{\operatorname{cis}\left[\left((n+1) \pi_{2}\right]\right\}^{1 / 6}\right.
$$

$$
\begin{aligned}
& =\left\{\operatorname{Cis}\left[(2 n+1) \pi_{2}\right]\right\}^{16}, \\
& =\operatorname{Cis}\left[(2 n+1) \frac{\pi}{12}\right] \quad\{\text { from De'Moinae's theorem }\}
\end{aligned}
$$

$$
=\operatorname{cis} \theta_{12}, \operatorname{cis} 5 \pi_{12}, \operatorname{cis} 9 \pi_{12}, \operatorname{cis} 13 \pi_{12}, \operatorname{cis} 17 \pi / 12,
$$

$$
C_{\text {is }} 21 \eta_{12}
$$

$$
\left.=\operatorname{Cis} \pi_{12}, \operatorname{Cis} 5 \pi_{12}, \operatorname{cis} 3 \pi\right)_{4}, \operatorname{Cis} 13 \pi_{12}, \operatorname{cis} 17 \pi_{12}, \operatorname{cis} 7 \pi \pi_{4}
$$

So, the roots of the eq (2) $x^{6}-i=0$ are:

$$
\left.\operatorname{Cis} \pi_{12}, \operatorname{cis} 5 \pi_{12}, \operatorname{cis} \frac{3 \pi}{4}, \operatorname{cis} 13\right)_{12}, \operatorname{cis} 17 \theta_{12},(\operatorname{sis}+\pi)_{4}
$$

So, the common roots of the two equations are: $\operatorname{cis} 30_{4}$ and $\operatorname{cis} 7 \pi_{4}$
$=\frac{1}{\sqrt{2}}(-1+i)$ and $\frac{1}{\sqrt{2}}(1-i)$ Ans

PROBLEM g:
Solve $x^{12}-1=0$, and fond which of its rover Satisfy the equation $x^{4}+x^{2}+1=0$

Solution:

$$
\begin{gathered}
x^{12}-1=0 \\
x^{12}=1 \\
x=(1)^{1 / 2} \\
x=(i \operatorname{lin\pi })^{1 / 2} \\
x=\operatorname{cis} \frac{n \pi}{6}=\cos \frac{n \pi}{6}+i \operatorname{smn} \frac{n}{6} \\
x=0,1,2,3,4,5 \\
\operatorname{Rots}=1, \frac{\sqrt{3}}{2}+i \frac{1}{2}, \frac{1}{2}+\frac{i \sqrt{3}}{2}, 0+i, \frac{1}{2}+\frac{i \sqrt{3}}{2},
\end{gathered}
$$

Roots fer the quadratic equation :

$$
x^{4}+x^{2}+1=0
$$

let $x^{2}=a$

$$
\begin{aligned}
& a^{2}+a+1=0 \\
& a=\frac{-1 \pm \sqrt{3} i}{2} \\
& x_{1}=\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{1 / 2} x_{2}=\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)^{1 / 2}
\end{aligned}
$$

We know that $x+i y=r \cos \theta+i r \sin \theta$

$$
\begin{array}{rlrl}
r=\sqrt{x^{2}+y^{2}} & \tan \theta & =\frac{+\sqrt{3}}{-1 / 2} \\
& =\sqrt{\frac{1}{4}+\frac{3}{4}} & \tan \theta & =-\sqrt{3} \\
r=1 & \theta & =120^{\circ}
\end{array}
$$

$$
x+i y=\cos 120^{\circ}+i \sin 120^{\circ}
$$

for suet $x_{1}=\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)^{1 / 2}$

$$
\begin{aligned}
& =\cos 60+i s \\
& =\frac{1}{2}+i \frac{\sqrt{3}}{2}
\end{aligned}
$$

for $\cos x_{2}=r=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{-\sqrt{3}}{2}\right)^{2}}$

$$
\begin{aligned}
\tan \theta & =\frac{-\sqrt{3} / 2}{-1 / 2}=1 \\
\theta & =60^{\circ} \\
\therefore \quad x+i y & =\left(\cos 60^{\circ}+i \sin 60\right)^{1 / 2} \\
& =\cos 30^{\circ}+i \sin 30^{\circ} \\
& =\frac{\sqrt{3}}{2}+i \frac{1}{2}
\end{aligned}
$$

Hence, then are only 2 toot oof the quadratic eqn which dalisfies $x^{2}-1=$ o

## Assignment 3

Group 5: Apurv \& Sanjay

## Question

9. Prove that the $n^{\text {th }}$ root of unity form a GP. Also show that the sum of these $n$ roots is zero and their product is $-1^{n-1}$

## Solution

Let

$$
z^{n}=1=e^{i(0+2 \pi m)}, \quad m \in \mathbb{Z}
$$

Taking $n^{\text {th }}$ root on both sides,

$$
z=e^{\frac{i 2 \pi m}{n}}, \quad m=0,1, \ldots,(n-1)
$$

So the $n$ roots are

$$
\begin{gathered}
z_{0}=\left(e^{\frac{i 2 \pi m}{n}}\right)^{0} \\
z_{1}=\left(e^{\frac{i 2 \pi}{n}}\right)^{1} \\
\vdots \\
z_{n-1}
\end{gathered}
$$

This may easily be identified as a GP with common ratio $e^{\frac{i 2 \pi}{n}}$. Now sum of the $n$ roots are given by

$$
\begin{aligned}
\sum_{k=0}^{n-1} z_{k} & =1+\left(e^{\frac{i 2 \pi}{n}}\right)^{1}+\left(e^{\frac{i 2 \pi}{n}}\right)^{2}+\ldots+\left(e^{\frac{i 2 \pi}{n}}\right)^{n-1} \\
& =\frac{1-\left(e^{\frac{i 2 \pi}{n}}\right)^{n-1+1}}{1-e^{\frac{i 2 \pi}{n}}} \\
& =\frac{1-e^{i 2 \pi^{*}}}{1-e^{\frac{i 2 \pi}{n}}}=0 \quad \text { Q.E.D }
\end{aligned}
$$

The product of the $n$ roots is given by

$$
\begin{align*}
\prod_{k=0}^{n-1} z_{k} & =e^{0} \times e^{\frac{i 2 \pi}{n}} \times\left(e^{\frac{i 2 \pi}{n}}\right)^{2} \times \ldots \times\left(e^{\frac{i 2 \pi}{n}}\right)^{n-1} \\
& =\exp \left(0+\frac{i 2 \pi}{n}+\frac{i 2 \pi}{n} 2+\ldots+\frac{i 2 \pi}{n}(n-1)\right) \\
& =\exp \left(\frac{i 2 \pi}{n}[0+1+2+\ldots+(n-1)]\right) \tag{0.0.1}
\end{align*}
$$

We observe that what we have in the argument is an A.P. So from the equation of the sum of $n$ terms of an A.P the argument get reduced as

$$
\begin{aligned}
\sum_{k=0}^{m-1} z_{k}=\exp \left(\frac{i 2 \pi}{n}(n-1) \frac{n}{2}\right)=\exp (i \pi(n-1)) & =\exp (i \pi)^{n-1} \\
& =-1^{n-1} \quad \text { Q.E.D }
\end{aligned}
$$

