Assigronent - 1
(1) Find modulus and argument of $\frac{(3-\sqrt{2} i)^{2}}{1+2 i}$.
(2) Convert $\frac{2-\sqrt{3} i}{1+i}$ into $x+i y$ form.
(3) One of the vertices of a regular hexagon is $A(1,0)$ and the origin is at $O(0,0)$. $\overline{O A}$ is also one of the sides, as shown in the fig. Find out remaining vertices.

(4) Determine region in the z-pane represented by

$$
R(2)>3
$$

(5) If z_{1}, z_{2} are any two complex numbers, prove that

$$
\left|z_{1}-z_{2}\right| \geqslant\left|z_{1}\right|-\left|z_{2}\right|
$$

(6) If $P_{1}\left(z_{1}\right), P_{2}\left(z_{2}\right)$ and $P_{3}\left(z_{3}\right)$ be any three points, prove that $\arg \left(\frac{z_{3}-z_{2}}{z_{1}-z_{2}}\right)=L P_{1} P_{2} P_{3}$. Show the points in the Argand diagram.
(7) show that product of any two complex numbers z_{1} and z_{2} is also a complex number.
(8) Convert the complex number $z=3+4 i$ into the polar form.
(9) Convert the complex number $2 e^{i \pi / 4}$ into the rectangular form.
(10) Find out the real and imaginary parts of the following quantity.

$$
\frac{(1-i) \cdot(2+i)}{(3+4 i)}
$$

(11) Simplify the following quantity and show (D) the result and (b) its complex conjugate on the Argand diagram.

$$
\frac{(4-2 i)(2+i)}{(3-2 i)}
$$

Group	Problem
$G-1$	6
$G-2$	3
$G=3$	5
$G-4$	4
$G=-5$	1
$G-6$	7
$G-7$	7
$G-8$	10
$G-9$	8
$G-10$	9

