

भौतिक अनुसंधान प्रयोगशाला, अहमदाबाद

Physical Research Laboratory, Ahmedabad

[HTTPS://WWW.PRL.RES.IN](https://www.prl.res.in)

PRL Ka Amrut Vyakhyan-09

Wednesday, 29 September 2021

@ 16:00 hrs. IST

**“DYNAMICS OF AURORA AND
AIRGLOW IN THE UPPER
ATMOSPHERE AND SPACE
AROUND THE EARTH”**

Prof. Kazuo Shiokawa

Institute for Space-Earth Environmental
Research, Nagoya University, Japan.

<https://youtu.be/Wyj30YrvFS0>

PRL@75

INDIA@75

PRL ka Amrut Vyakhyaan-09

Title: “Dynamics of aurora and airglow in the upper atmosphere and space around the Earth”

Speaker: Prof. Kazuo Shiokawa

Institute for Space-Earth Environmental Research, Nagoya University, Japan.

On Wednesday, 29 September 2021

Abstract

Aurora and airglow are light emissions from the upper atmosphere at altitudes of 80-600 km where International Space Station and most low-altitude satellites are flying. Aurora is excited by collision of space plasma with the Earth's atmosphere, while airglow is excited mainly by solar ultraviolet emissions. The space plasmas originally come from the sun and from the Earth's atmosphere. They are stored and energized in the space around the Earth. We can visualize dynamics of space plasma and upper atmosphere through aurora and airglow. The dynamic variations contain geomagnetic storms and substorms, plasma bubbles, and traveling ionospheric disturbances. These space plasma and upper atmospheric dynamics often cause satellite anomaly, satellite positioning error, radiation dose of satellites and astronauts, ozone destruction, and so on, as referred to the space weather effect.

The Speaker

Professor Kazuo Shiokawa is the Vice Director of the Institute for Space-Earth Environmental Research, Nagoya University, Japan and the Director of the Center for International Collaborative Research at ISEE at Nagoya University. He is also the elected President of the Scientific Committee on Solar-Terrestrial Physics (SCOSTEP). Prof. Shiokawa did his B.Sc. (1988) and M.Sc. (1990) in Geophysics from Tohoku University, Japan, and Ph.D. from the Nagoya University, Japan. He had worked as a Research Associate at the Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, Visiting Scientist at Max-Planck-Institut fuer extraterrestrische Physik, Germany, and Associate Professor & Professor at the STEL. His research interests include Space Science and Aeronomy, in general, and, in particular, the dynamical coupling of the solar wind, magnetosphere, ionosphere, thermosphere, mesosphere, ground-based optical and electromagnetic measurements related to aurora and airglow. Prof. Shiokawa has received many awards and recognition which include, Obayashi Early Career Scientist Award in 1999 and Tanakadate Award in 2009, both of Society of Geomagnetism, and Earth, Planetary, and Space Physics, Editors' Citation for Excellence in Refereeing for JGR-Space Physics of American Geophysical Union for the years 2010 and 2011. He is a member of the Society of Geomagnetism, and Earth, Planetary, and Space Physics, Japan, the American Geophysical Union, and the Meteorological Society of Japan. He has published around 320 articles in peer-reviewed journals in addition to several chapters in books.

About PRL

The Physical Research Laboratory (PRL), known as the “cradle of space science” in India, is

one of the premier research institutes founded in 1947 by Prof. Vikram Sarabhai, a renowned Cosmic Ray Scientist, a great visionary and institution builder. PRL played a seminal role in producing a highly motivated cadre of space scientists and the technologists of highest international repute. The first scientific rocket launched from Thumba on 21st November-1963 and many other rockets launched thereafter contained payloads developed at PRL. Dr. Sarabhai initiated many of these scientific and technical activities at PRL which eventually led to the formation of the Indian Space Research Organization (ISRO). Therefore, PRL is known as the “cradle of space science” in India. Further, the research in

the area of Plasma Physics expanded to the formation of the Institute of Plasma Research (IPR).

As an institution PRL is unique in that it conducts fundamental research in a wide range of research areas from the Earth to the cosmos, and comprising Astronomy and Astrophysics; Solar Physics; Space and Atmospheric Sciences; Theoretical Physics; Geosciences; Atomic, Molecular and Optical Physics, Astrochemistry; and Planetary Sciences and Space Exploration. PRL is one of the rare research institutes of international repute wherein research in such diverse fields of sciences is carried out using several state-of-the-art experimental facilities that exist under one umbrella.

Along with the ongoing research, several new initiatives have been taken up during the last few years. The Multi-Application Solar Telescope (MAST) at Udaipur Solar Observatory has been operationalized. PRL initiated scientific programmes in frontier areas of research, which include a search for exo-planets, laboratory studies of interstellar grains, laboratory synthesis of cold astromolecules and experimental studies in the field of quantum optics. PRL is also developing several scientific payloads as a part of ISRO's larger vision and contributing to roadmap for competitive scientific exploration of the solar system and beyond. In particular, PRL has been contributing significantly not only in building instruments for space missions, such as Chandrayaan-1, Chandrayaan-2, AstroSat and upcoming Aditya-L1, Chandrayaan-3 and planetary and space missions, but also by bringing out new and insightful science results.

PRL contributes to several national and international research programmes and to human resource development through its Doctoral and Post-Doctoral Programmes, capacity building programmes, such as UN Course on Space Science, and science and engineering internship programmes. PRL contributes significantly to society through its Outreach Programmes by periodically organizing science exhibitions and Open Houses, planned visits of students of various school and college to PRL, and popular talks at various institutions to not only share the excitements of the advancements of contemporary scientific findings but also to encourage students to take up sciences as their research career.